

Atari Floppy Disk
Copy Protection

By Jean Louis-Guérin (DrCoolZic)
Revision 1.4 – June 24, 2015

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 2 / 77

Table of Contents
Table of Contents .. 2

Chapter 1. Presentation ... 4

Chapter 2. Copy protections detail description ... 5
2.1 Protections based on data .. 5
2.1.1 Number of tracks (NOT) ... 6
2.1.2 Shifted tracks (SFT) ... 7
2.1.3 Track Layout Pattern (TLP) .. 9
2.1.4 Number of Sectors (NOS) .. 9
2.1.5 Sector Sizes (SSZ) ... 10
2.1.6 Invalid ID Field (IIF) .. 10
2.1.7 Duplicate Sector Number (DSN) .. 12
2.1.8 Sector within sector (SWS) .. 13
2.1.9 Non Standard DAM (NSD) ... 13
2.1.10 Sector with No ID (SNI) .. 14
2.1.11 Sector with No Data (SND) .. 14
2.1.12 Data CRC Error (DCE) ... 14
2.1.13 Data Track (DTT) ... 15
2.1.14 Hidden Data into GAP (HDG) .. 15
2.1.15 Hidden data into nonstandard tracks (HDT) .. 15
2.1.16 Invalid Data in Gap (IDG) ... 16
2.1.17 Invalid Sync-mark Sequence (ISS) .. 16
2.1.18 Partially formatted track (PUT) ... 16
2.1.19 Fuzzy Sector (FZS) .. 17
2.1.20 Fuzzy Track (FZT) .. 17
2.2 Protections based on timing ... 18
2.2.1 Long / Short Sector (LGS & SHS) .. 18
2.2.2 Long/Short Track (LGT & SHT) ... 19
2.2.3 Sector Bit-rate Variation (SBV) .. 19
2.2.4 No Flux Area (NFA) .. 20

Chapter 3. Preservation of Atari floppy disks ...21
3.1 Cleaning a floppy disk to create correct image .. 21
3.2 Why do we need several revolutions for preservation? .. 21
3.3 Kryoflux short presentation .. 23
3.4 Supercard Pro short presentation .. 23

Chapter 4. Technical Information ...24
4.1 Atari Low-Level Formats ... 24
4.1.1 Format for 9/10/11 Sectors of 512 Bytes ... 25
4.1.2 “Standard” 128-256-512-1024 Bytes / Sector Format ... 26
4.2 WD1772 DPLL Input Circuitry ... 27
4.2.1 Description ... 27
4.2.2 WD1772 Detection of Fuzzy Border Bits ... 29
4.3 WD1772 MFM track language ... 30
4.4 WD1772 Synchronization (sync marks detection) .. 31
4.5 False sync mark detection .. 32
4.6 Overlapping Sync Mark ... 32
4.6.1 Overlapping $4489-$4489 ($A1-$A1) .. 32
4.6.2 Overlapping $5224-$4489 ($C2-$A1) .. 33
4.6.3 Overlapping $4489-$5224 ($A1-$C2) .. 33
4.6.4 Overlapping $5224-$5224 ($C2-$C2) .. 33
4.6.5 Invalid Sync sequence ... 33
4.7 WD1772 Bug in Read/Write Track commands .. 34
4.8 WD1772 CRC Information.. 35
4.8.1 CRC Computation .. 35
4.8.2 Playing with the CRC ... 35
4.9 No Flux Area on Disk ... 37
4.9.1 Checking NFA with the WD1772 ... 37

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 3 / 77

4.9.2 Special case of No Flux Area over index ... 38
4.10 Unformatted Diskette / Track / Sector .. 41
4.10.1 Presentation ... 41
4.10.2 Partially unformatted track ... 42
4.10.3 Partially formatted Track .. 44
4.10.4 Unformatted track detection ... 44
4.10.5 How to reproduce unformatted areas on Floppy Disks? .. 44
4.11 Fuzzy Bits ... 46
4.11.1 Flux Reversals in Ambiguous Area .. 46
4.11.2 MFM Flux Timing Violation... 46
4.11.3 Weak Bit ... 47
4.12 Write Splices ... 48
4.12.1 Sector write splices .. 48
4.12.2 Track write splices .. 49
4.13 Hidden data ... 50
4.13.1 Union Demo / Dragon Flight hidden sequence .. 50
4.13.2 Jupiter Masterdrive hidden sequence .. 50
4.13.3 Realm of the Troll ... 51

Chapter 5. Analysis of Games/Programs ...52
5.1 Barbarian (from Psygnosis) .. 53
5.2 Bob Morane .. 54
5.3 Colorado ... 54
5.4 Computer Hits Volume 2 (Beau-Jolly) .. 55
5.5 D50 Editor V2 (Dr.T) ... 57
5.6 Dragon flight ... 58
5.7 Dungeon Master (FTL Inc.) .. 59
5.8 Eco by Ocean ... 60
5.9 Golden Axe ... 61
5.10 Jupiter Masterdrive .. 62
5.11 Kick Off 2 (Anco Software 1990) ... 63
5.12 Maupiti Island ... 64
5.13 Night Shift (US Gold) ... 64
5.14 Obitus .. 65
5.15 Operation Neptune ... 65
5.16 Populous (Electronic Arts) .. 65
5.17 Power Drift .. 66
5.18 Sherman M4 .. 67
5.19 Star Glider 2 .. 67
5.20 Theme Park Mystery (Image Works) .. 68
5.21 Time of lore ... 69
5.22 Turrican ... 70
5.23 Vroom .. 71
5.24 Wizball, Ocean .. 72
5.25 Z-out .. 72

Chapter 6. References ...73
6.1 Documents / Articles ... 73
6.2 Forums Threads ... 73
6.3 Related Patents .. 74
6.4 Web Sites .. 74
6.5 FDC & Related Information ... 74
6.6 Game References ... 74

Chapter 7. Document history ..76

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 4 / 77

Chapter 1. Presentation
This document describes floppy disk protection mechanisms used on the Atari platform.
This type of copy protection is very old and, with many years of development and the usage
of sophisticated floppy disk hardware, it has conducted to numerous protection methods
frequently referred as key disk protection. The key disk protection method has at least two
obvious qualities: first, a key disk can be simultaneously used as protection and distribution
disk and second, this type of protection is very cheap but nevertheless hard to tamper with.
So, key disk protections have been widely used to protect Atari programs and games. To
fully understand the key disk based protections, you need to have some basic knowledge
about FD/FDC data and operation.

Some of the FD protection mechanisms are generic to many platforms while some are
directly related to a specific Floppy Disk Controller used on a specific platform. Therefore, in
order to get a general understanding, I have reviewed the FD protections mechanism used
on several platforms: Amiga, Commodore C64, PC, Tandy, Atari 8 bits and Atari ST 16 bits
(see the references section). Information about the different copy protection mechanisms
presented here is the result of experimentations and reading from the Web. Links to the
original information on Web sites can be found at the end of this document in the references
section.

In order to validate this document, I have analyzed the protections of many original floppy
disks with several programs that I have developed over time:
 For detailed analysis of timing information, the first program that I have created is called

Analyze. It runs on Atari and PC. This program reads the flux reversals stream files
produced on Atari by the Discovery Cartridge and performs a detailed analysis. This
program takes its root in experiments I have done back in the 80s! The program is now
obsolete and replaced by the AUFIT program presented below.

 For basic protection analysis I have created a program running on Atari called Panzer
(Protection ANalyZER) that automatically detects and reports many protections. This
program also provides the capability to directly run several FDC commands and analyze
the sectors and tracks information (including timing for track and sector) read.

 KFAnalyze program reads input Stream files generated by the KryoFlux board. A
Stream file contains Atari FD information at the flux reversals level, it is therefore possible
to provide very accurate detections of protections especially those related to bit cell
timing variation. The heart of this program is a precise emulation of the Western Digital
WD1772 Floppy Disk Controller. The emulation mimics a full DPLL data separator and
provides functions equivalent to the read track, read address, and read sector
commands reading data directly from the Stream files. Therefore it is possible to process
the Stream information as if we were read by an Atari WD1772 FDC but with a lot of extra
information especially timing information. This is the ancestor of the Aufit program
presented below.

 My latest program for analyzing Atari floppy disk content is called AUFIT (Atari Universal
FD Image Tool). It provides many features to analyze and display FD content at the flux
transition level (as provided by Kryoflux and Supercard Pro) using a nice Graphical User
Interface. Beyond FD content analysis, the programs also provides the capability to
convert the information in several Atari images formats (Pasti, ST, MSA) for emulation.

I want to thanks to many people on Atari forum for taking time to discuss some of the protections
presented here (See HERE and HERE).

http://www.atari-forum.com/index.php
http://www.atari-forum.com/viewtopic.php?t=9012
http://www.atari-forum.com/viewtopic.php?f=95&t=21952

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 5 / 77

Chapter 2. Copy protections detail description
In this section I provide a detailed description of the different protection’s mechanisms used
in Atari Key disks. The protections have been grouped into two categories:
 Protections based on data
 Protections based on timing

2.1 Protections based on data
This category contains protections based on using non-standard or impossible to write (on
Atari) data content in the tracks and/or sectors of a diskette.

A “normal diskette” has one or two sides (i.e. single or double sided) each having 80 tracks
numbered from 0 to 79. A more detailed description of formats can be found in the Atari Low-
Level Formats section.

A “standard track” on an Atari is composed of 9 sectors each with 512 bytes of data
sequentially numbered from sector 1 until sector 9.

However it is not uncommon to use diskettes with up to 11 sectors and more than 80 tracks
as it allows packing more data. A good duplication/imaging program should be able to detect
and reproduce all these alternatives and therefore they are not really considered as
protection.

But beyond these basic variations of a diskette’s data content we will see that some
protections uses mechanism difficult to detect (so that a copy program would not easily find
them) and some that cannot be reproduced without special hardware.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 6 / 77

2.1.1 Number of tracks (NOT)

A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each side. Some simplistic
protections are based on extra or missing tracks.

2.1.1.1 Extra tracks (EXT)
 Description: A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each

side. It is possible to write up to 82 or even 83 tracks on one side of a diskette. It is also
possible to “hide” one or several tracks on the second side of an “officially” (as specified
in the boot sector) single sided diskette.

 Creation: Easy to create on Atari. Note that some early Atari drives are single sided, and
some cannot position the head past track 79. Beware that using tracks over 82 has been
reported to damage some floppy drives.

 Detection: You have to probe the diskette using FDC commands to check if some extra
tracks exist (probing 82 tracks is usually sufficient). For Single Sided diskette, you also
need to probe for hidden track on second side.

 Duplication: Easy by software.
 Emulation: Just need to store information about extra tracks.
 Example: Passengers on the Wind (Infogrames) uses tracks 80 & 81.

2.1.1.2 Missing tracks (TNF)
 Description: A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each

side. It is possible that not all of these tracks are formatted. For detail description of
unformatted track please refer to Unformatted Diskette / Track / Sector. Note that it is
possible to hide data in a track that seems unformatted. Hiding data in what looks like an
unformatted track is usually difficult to detect (for example see Power Drift).

 Creation: On a non-preformatted diskette you only need to format the “non-missing”
tracks. On a preformatted diskette (usually diskettes are sold DOS pre-formatted) you
need to mimic unformatted tracks by writing, for example, some random data to those
tracks without sync but the results is really not the same.

 Detection: Using WD1772 commands: i.e. a seek command with the verify option should
fail on unformatted track, or a read address should not find any sector.

 Duplication: If only the absence of sector is tested then it is easy to reproduce by
software.

 Emulation: The preservation file needs to flag missing tracks (e.g. indicating 0 sector).
 Examples: Barbarian (Track 74 – 79 missing), Run the Gauntlet, Kick Off 2

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 7 / 77

2.1.2 Shifted tracks (SFT)

Normally the first sector of a track starts shortly after the index pulse and the last sector of
the track end-up before the next index pulse. On a normal track, the post-index GAP (at
beginning of a track) is about 60 bytes and the pre-index GAP (at the end of a track) is about
600 bytes. In this case the track write splice (location where the floppy drive write gate is
turned on/off) is located at the index.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a normal track

Several protections shift the position of the track relative to the index. Note that in this case
the track write splice is no more located at the index. The shifted track protections can be
further sub-classified as explained thereafter but usually this is irrelevant for emulation.

This type of protection is challenging for hardware copier. The copy should not be done from index to
index as this will results in a track write splice in middle of a data segment. The copy should start from
the first sector until the last sector using the correct shifted starting position with respect to the index.

2.1.2.1 Data over index (DOI)
 Description: A sector where the Data Field span “over the index”. Normally all sectors of

a track should end up before the index pulse. Yet it is possible to create a track with a
total length that is slightly more than what a normal track can hold. This results in the last
sector “wrapping around” the beginning of the track.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a track with Data over Index

 Creation:
 On Atari: it is possible to create a “long track” with a total length that is slightly more

than what a normal track can hold (usually about 10 to 20 bytes). This is done by
placing the header of the last sector close to the end of the track. The write-track
command starts at the index pulse and continues until the next index pulse. Therefore
the last sector will be truncated during the format (i.e. write track) operation. However
the write-sector command on this truncated sector will execute normally and this will
result in data being written over and beyond the index pulse.

 On Mastering machine: Normally writing a track is triggered by the index pulse. It is
possible to shift the start of the write operation by some amount (for example time of 20
bytes) and of course to shift by the same amount the stop of the write operation.

 Detection: The last sector spread over the index pulse but it is read as a normal sector
by a read-sector command. It is therefore necessary to use a read-track command to
find out that the last sector actually wrap over the beginning of the track or to somehow
measure the start position (timing) of the last sector.

 Duplication: Once detected the duplication of such sector can be done by formatting
correctly the track.

 Emulation: Requires to store the track and/or sector position in the preservation file.
 Example: Kick Off 2 places almost all the data of one sector at the beginning of a track.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 8 / 77

2.1.2.2 Data beyond index-pulse (DBI)
 Description: This is an extreme variation of the Data over index protection. Normally all

sectors of a track should end up before the index pulse but it is possible to create a track
where the ID Field for the last sector is placed at the very end of the track with the
corresponding Data Field placed at the very beginning of the track. You have to
remember that the Data Address Mark of the Data Field is to be found within 43 bytes
from the last ID Field CRC byte and therefore placement of the ID Field and
corresponding Data Field in the track is needs to be very accurate. The last sector “wraps
around” the beginning of the track. See Computer Hits Volume 2 for an example.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4 G1

Sector n

Sector positions relative to the index pulse for a track with data field beyond index

 Creation: It is almost impossible to position correctly such ID field on an Atari. Therefore
this protection was usually created with mastering machines. The track is shifted so that
the index pulse occur just at the end of the last ID field and of course the corresponding
data field is located at the beginning of the track.

 Detection: This type of sector is read normally by the read-sector command. It is
therefore necessary to use a read-track command to find out that the last sector actually
spread over the beginning of the track or to measure the position of the last sector.

 Note: The DMA can only transmit multiple of 16 bytes from the FDC. Therefore during a read-
track command, one or several of the last bytes (always less than 16) may not be transferred
by the DMA. Consequently it is possible that a read-track do not transfer the ID Field (or

transfer it partially) when it is placed at the very end of a track. However the FDC read-address
and read-sector commands read the ID field for this sector correctly.

 Duplication: It is almost impossible to reliably place an ID field at the very end of the
track on an Atari due to floppy drives rotation speed variation. Therefore this protection
requires specific hardware to be reproduced correctly.

 Emulation: Requires to store the track content and/or sector position.
 Example: Computer Hits Volume 2 (Beau-Jolly)

2.1.2.3 ID over index (IOI)
 Description: A sector where the ID Field span “over the index”. This is a variation of the

Data Over the Index-pulse protection. But in that case the index pulse happen inside an
ID field. Please refer to the Data Over Index-pulse protection for more details.

 Creation: It is almost impossible to position an ID over the index on an Atari. Therefore
this protection could only be created on mastering machines.

 Detection: It is usually not possible to read this ID using a read track command because
the ID segment is at the very end of the track and usually some data read get stuck in the
DMA buffer (see above). Even though this ID can’t be seen using a read track it can be
read normally using read address and read sector commands.

 Duplication: It is almost impossible to reliably place an ID field at the very end of the
track on an Atari due to floppy drives rotation speed variation. Therefore this protection
requires specific hardware to reproduce the key disk.

 Emulation: Requires to store the track content and/or the sector position.
 Example: Colorado, Computer Hits Volume 2 disk 2.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 9 / 77

2.1.2.4 ID beyond index (IBI)
 Description: This is an extreme variation of the ID over index protection. In this case

only the sync marks that belong to the last ID field are located before the index pulse but
the rest of the ID fields and the corresponding data field wrap around the track’s
beginning.

 Creation: It is impossible to position an ID beyond the index on an Atari. Therefore this
protection could only be created on mastering machines.

 Detection: It is usually not possible to read this ID correctly using a read track command
because the sync of the ID segment are located at the end of the track and therefore not
seen by the read track command. Even though this ID can’t be seen using a read track
it can be read normally using read address and read sector commands.

 Duplication: It is impossible to place an ID field at the very end of the track on an Atari
due to floppy drives rotation speed variation. Therefore this protection requires specific
hardware to reproduce the key disk.

 Emulation: Requires to store the track content and/or sector position.
 Example: Computer Hits Volume 2 second disk.

2.1.3 Track Layout Pattern (TLP)
 Description: With the WD1772 FDC it is possible to slightly modify the layout of a track

by varying the number of characters in the gaps in different position of the track (e.g. vary
the length of the GAP4 placed between the different sectors). It is therefore possible to
create a track with a specific layout pattern different from the standard pattern. This is a
sort of floppy disk water-marking technique.

 Creation: It is quite easy to format a track with specific values for each GAPs by sending
the appropriate information to the FDC during the write-track command.

 Detection: Measure the layout of the different fields of the track using the read-track
command and look for a specific pattern. Note that some tolerance needs to be taken in
account as the number of bytes reported for a specific gap may vary from read to read.

 Duplication: Once detected it is easy to duplicate by software.
 Emulation: Requires storing the track information in the preservation file.
 Example: Does not seems to be used on Atari?

2.1.4 Number of Sectors (NOS)
 Description: The standard Atari FD format uses tracks with 9 sectors of 512 data bytes.

However many games use 10 or even 11 sectors per track just to pack more data on the
diskette. However alone number different from 9 should not be considered as a
protection. The following values are often used:
 Tracks with less than 9 sectors often use sectors with 1024 data bytes.
 Tracks with 11 sectors push several of the parameters that can be handled by the

WD1772 FDC close to their limits. This is especially true considering that the IBM
Floppy Drive standard allows a 3% rotation’s speed variation. These tracks are
therefore often referred as “read only” because once written they can’t be modified.
This is due to very low number of bytes used in the GAP fields that does not allow for
the write sector command to work correctly.

 Tracks with 12 or more sectors (e.g. 70!) clearly indicate that some “tricks” have been
used as 12 real sectors won’t fit on a track.

 Creation: Up to 11 is possible in software, but remember that with 11 sectors it is almost
impossible to write data consistently without using special hardware.

 Detection: Easy with multiple read-address command.
 Duplication: Easy in software for a number of sectors per track up to 10. Duplicating

track with 11 sectors is possible but more challenging.
 Emulation: Requires nothing special the preservation file just needs to store the data

information for all the sectors of the track using read-sector commands.
 Examples: Computer Hits Volume 2: 11 sectors / track, Theme Park Mystery: 12 sectors

/ track, Sherman M4: 70 sectors / track.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 10 / 77

2.1.5 Sector Sizes (SSZ)
 Description: Normally the tracks have sectors with 512 bytes long Data Field. But it is

possible to create a track with different data field size (usually a mixture of 512 and
1024)1. This is a more reliable approach to increase the overall capacity of a track rather
than using 11 sectors of 512 bytes. Non-standard sector size are not be considered as a
protection. Two common examples of format with different sector size are:
 9 sectors of 512 bytes plus 1 sector with 1024 bytes, and
 5 sectors of 1024 bytes plus 1 sector with 512 bytes.

 Creation: Easy on Atari.
 Detection: Easy with multiple read-address command.
 Duplication: Easy on Atari.
 Emulation: Requires nothing special the preservation file just needs to store the data

information for all the sectors of the track using read-sector commands.
 Examples: Kick Off 2, Turrican uses tracks with a mixture of 1024 and 512 bytes sectors.

2.1.6 Invalid ID Field (IIF)

An ID Field contains the following information after the ID Address Mark: the Track Number,
the Side/Head Number, the Sector Number, the Sector Length, and two CRC bytes.
To understand these protections you need to know that during a read-sector command
when an ID Field is located on the disk, the WD1772 compares the Track Number of the ID
Field to its internal Track Register. If there is no a match, the next ID Field is read and a
comparison is made again. If there is a match, the Sector Number of the ID Field is
compared with its internal Sector Register. If there is no Sector match, the next encountered
ID Field is read off the disk and a comparison is made again. If both matches and if the ID
Field CRC is correct, the sector is located and an internal register is loaded with the Sector
Length. Invalid ID field can further be decomposed:

2.1.6.1 Non-standard IDAM (NSI)
 Description: The normal IDAM (ID Address Mark) used by the WD1772 is the character

$FE which is sent after a sequence of 3 $A1 sync marks. An undocumented feature of
the WD1772 is that it accepts any character in the range $FC-$FF as an IDAM2.

 Creation: During a write-track command it is possible to use any value in the range
$FC-$FF instead of the normal $FE IDAM character.

 Detection: As the read-address command and the read-sector command execute
normally it is easy to hide the fact that a non-standard IDAM has been used. Detection
can be done using a read-address command.

 Duplication: Once detected this protection is easy to duplicate.
 Emulation: Requires to store the track information as well as the address information.
 Example: Z-out

1 Note that several of the BIOS calls will not work for sectors with size different than 512.

2 Note that, in MFM, for the marks characters between $F8 and $FF the least significant bit is
always ignored by the WD1772 and therefore : $F8 = $F9, …, $FE = $FF

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 11 / 77

2.1.6.2 Invalid track number (ITN)
 Description: A sector with an ID Fields that contains a track number different from the

actual track number (in FDC register). In order for the type I commands (e.g. seek) to
succeed, on such a track, the verify bit has to be reset. Otherwise the FDC check that at
least one sector has the correct track number. The read-sector command using
“standard” parameters will also fail.

 Creation: Use write-track command with incorrect track number in ID Field.
 Detection: The read-sector command compares the track number of the ID Field with

the track register if this matches it then compares the sector number of the ID Field with
the sector register. If any compare operation fails the FDC retry 5 times then terminate
the command with a record not found (RNF) error. Reading this kind of sector is possible
but requires playing with the FDC registers (i.e. loading the track register with invalid
value).

 Duplication: Easy by software
 Emulation: The preservation file should store the exact ID block.
 Example: Star Glider 2, Dragonflight

2.1.6.3 Invalid head number (IHN)
 Description: An ID field with an invalid Side/Head Number (i.e. not equal to 0 or 1).

Normally this field is supposed to be equal to the side you are reading however it should
be noted that the WD1772 does not use this information so any value can be used.

 Creation: It is possible to write invalid values for the Side Number of an ID Field by
sending the appropriate data to the FDC during a write-track command.

 Detection: Use a read-address command and compare the side value.
 Duplication: Can easily be done by software
 Emulation: The exact content of the ID field need to be saved in the preservation file.
 Example: Star Glider 2, Dragonflight

2.1.6.4 Invalid sector number (ISN)
 Description: During the format command the character loaded into the data register of

the WD1772 is written to the disk. However the characters $F5 and $F6 are used to write
respectively the Sync Characters $A1 and $C2 with a missing clock transition and the
character $F7 is used to generate two CRC bytes. This implies that it is not possible to
create a sector with an ID ranging from 245 through 247 ($F5-$F7). In fact the WD1772
documentation indicates that the sector number should be kept in the range 1 to 240.

 Creation: It is not possible to create a sector with an ID in the range of 245-247 with the
WD1772 FDC and therefore creating such ID Field requires specific hardware.

 Detection: Can easily be done with a read-address command.
 Duplication: Requires special hardware.
 Emulation: The sector with an invalid ID number is read as a normal sector by a read-

sector command and stored in the preservation file like any other standard sector.
 Example: Dungeon Master (FTL Inc.) use a sector number of 247 ($F7) on track 0

It is actually possible to write a byte between $F5-$F7 inside an ID field using the escaping capability
of the WD1772 see WD1772 MFM track language.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 12 / 77

2.1.6.5 Invalid sector length (ISL)
 Description: An ID field with an invalid Sector Length (i.e. not in range 0-3). Normally

this field is supposed to take the value 0, 1, 2, 3 corresponding to respectively 128, 256,
512, 1024 data bytes size. As the WD1772 only uses the last three bits of the sector
length information it is possible to write sector length value larger than 3. For example
0x03 and 0xFF are equivalent.

 Creation: It is possible to write invalid values for the Sector Length of an ID Field by
sending the appropriate data to the FDC during a write-track command.

 Detection: Use a read-address command to get all the fields.
 Duplication: Can easily be done by software.
 Emulation: The exact content of the ID field need to be saved in the preservation file.
 Example: Star Glider 2 Z-Out.

2.1.6.6 ID CRC Error (ICE)
 Description: A sector that has a CRC error in the ID Field. This results in a sector that

cannot be read by the read-sector command.
 Creation: Easy with the write-track command. For example by sending 2 normal bytes

(e.g. $00, $00) at the end of the field instead of one "Write CRC" character ($F7).
 Detection: It is possible to read this kind of sector ID field with a read-address command

and to verify that it has a wrong CRC. But it is not possible to read the sector with a read-
sector command.

 Duplication: Can easily be done by software
 Emulation: Requires to store the complete track and address information in the

preservation file.
 Example: xxx

2.1.7 Duplicate Sector Number (DSN)
 Description: A track where, two (or more) sectors use the same sector’s number. Using

blindly a read-sector command, for this duplicated sectors, result in reading randomly
one of the two sectors based on current head position. In order to read a specific one, it
is necessary to issue a read-sector command delayed by a specific amount of time from
the index pulse. Usually, to facilitate the detection, these two sectors are placed well
apart (e.g. at the beginning and the end of the track). Sometimes the second ID field is
not followed by a corresponding data field (no sector block protections).

 Creation: Easy in software.
 Detection: Easy by using read-address and/or read-track commands.
 Duplication: Easy in software.
 Emulation: The information for all sectors including the duplicate sector needs to be

saved. In is also necessary to store the position of the sector in the track.
 Example: Night Shift uses a duplicated sector numbered 66 (the duplicated sectors also

use the no data block protections).

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 13 / 77

2.1.8 Sector within sector (SWS)
 Description: During formatting it is possible to place a new sector that overlap with a

previous one. Therefore when reading these sectors we have the impression that the
second sector is located within the first one. The layout of a first sector contains the
fields: GAP2-ID Field-GAP3-Data Field-GAP4. The included sector has its own GAP2-ID
Field-GAP3-Data Field placed inside the Data Field of the including sector. This is
possible because during a read-sector command the sync mark detector of the WD1772
is turned off and therefore the included field are treated as normal data (sync sequence
not recognized). A detailed explanation of this protection can be found in the Theme Park
Mystery example. An even more complex variant is to have a sector within another sector
which is itself located within another sector (SWSWS). Even with such a complex layout it
is possible to read correctly an “included sector”! For an example of SWS-WS-WS look at
Computer Hits Volume 2. It is also possible to shift by one bit-cell the included sector in
respect to the including sector. This trick allows to read data bits as well as clock bits of
the overlapped data field as in Turrican to check presence of NFA.

 Creation: Only possible in specific cases on Atari and therefore usually requires usage of
specific hardware.

 Detection: The read-address command allows to read the ID fields of the including and
included sectors. The read-sector command reads the including sector beyond the start
of the included sector because during a read-sector command the sync mark detector of
the WD1772 is turned off. The included sector is read normally as if no including sector
was placed before. Usually look for this protection when a track has a number of sector
equal or exceeding 12. To confirm this protection you can use a read-track command.
Another alternative is to check the data inside the including sector’s Data Field and look
for GAP2 followed by an ID Field etc. However beware that this will not always work due
to the way the FDC works. For example it is not possible to find the ID and DATA field of
sector 16 inside sector 0 of track 2 of Computer Hits Volume 2 because it is shifted.

 Duplication: Require special hardware. Often combined with other protections like NFA.
 Emulation: Once the protection is detected the preservation program should store the

track layout and the information about the including and following sectors.
 Example: Theme Park Mystery, Computer Hits Volume 2, Turrican, Nitro Boost

Challenge

2.1.9 Non Standard DAM (NSD)
 Description: The normal DAM (DATA Address Mark) used by the WD1772 is either the

character $FB for normal data and $F8 for deleted data which is sent after a sync
sequence of 3 $A1 sync marks. An undocumented feature of the WD1772 is to accept
the any character $F8-$FB as a DAM (see also Non Standard IDAM).

 Creation: During a write-track command it is possible to use $FC or $F9 instead of the
normal $FB or $F8 DAM character.

 Detection: As the read sector command execute normally it is easy to hide the fact that
a non-standard DAM has been used. Detection can be done through a read track
command where you have to look for a $FC/F9 character instead of $FB/F8 in the header
of the DATA field. Note that when an alternate DAM is used, the DATA Field still reads
without a CRC error.

 Duplication: Once detected this protection is easy to duplicate.
 Emulation: Requires storing the complete track in the preservation file.
 Example: No example found

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 14 / 77

2.1.10 Sector with No ID (SNI)
 Description: A sector with a Data Field but not preceded by an ID Field.
 Creation: on Atari it is quite easy to format a sector of a track with a DATA field not

preceded by an ID Field using a write-track command.
 Detection: There is no way to read this kind of sector with a read sector command.

Therefore the only way to detect the presence of such data field is by using a read track
command. Therefore this kind of sector it is very rarely used.

 Duplication: Can easily be done by software.
 Emulation: Requires storing the track information in the preservation file.
 Example: Gunship (D1 from Air Supremacy Compilation), Vroom after sector 106 has a

fuzzy SNI (see Fuzzy Track (FZT))

2.1.11 Sector with No Data (SND)
 Description: A sector with an ID Field but not followed by a Data Field.
 Creation: on Atari it is quite easy to format a sector of a track with an ID field not followed

by a Data Field using a write-track command.
 Detection: This kind of sector is found using a read-address command, but is not found

using a read-sector command. This is because during the read-sector command the
FDC expects to find a DAM/DDAM within 43 bytes from last ID Field CRC byte, if not the
sector data is searched again for 5 revolutions and the command is terminated with the
Record Not Found (RNF) Status bit set.

 Duplication: Can easily be done by software.
 Emulation: Requires storing the track information in the preservation file.
 Example: Night Shift uses duplicate sectors 66 both of them having No Data fields

2.1.12 Data CRC Error (DCE)
 Description: A sector that has a CRC error in its Data Field.
 Creation: Easy during write-track command by using the same mechanism as

described in Invalid ID CRC.
 Detection: Can easily be done using a read-sector command. The data sector is read

normally but the CRC error status bit is set at the end of the command.
 Duplication: Can sometimes be done in software.
 Emulation: The content of the sector should be stored as normal but the CRC error

indicator must be added to the preservation file.
 Example: Populous

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 15 / 77

2.1.13 Data Track (DTT)
 Description: This kind of track does not contains the Atari standard ID / Data / Gap

fields. The track is usually composed of a special Header field followed by a Single Data
field. In order to be read correctly the Header needs to be preceded by 3 $A1 sync
marks. The only way to read the Single data field is to use a Read Track command.
Remember that during a Read Track command the sync detector of the WD1772 is
active at all time and therefore any MFM sequence of bits that contains 0x000101001 will
cause the FDC to resynchronize and consequently the data are not read correctly after
that. To avoid a resynchronization an escape character (often 0x07 or 0x0F) is inserted
whenever the input data contains this sequence. When the track is read the escape
characters are removed to get back the original data.

 Creation: As the Data record can contains “invalid code” (i.e. code like 0xF5-0xF7) it
can’t be written using a Write Track command. It is therefore mandatory to use special
hardware to write this kind of track.

 Detection: A Read Track command is used. The software looks for at least three 0xA1
then decode the rest of the Header and then read the data record according to parameter
passed in the header. A checksum is often added to the data field and can be used to

verify that the data record has been read correctly.
 Duplication: Not possible in software requires special hardware.
 Emulation: For emulation it is necessary to save the complete content of the track as

read by the Read Track command.
 Example: Maupiti Island (escape character 0x07), Golden Axe, Hot Rod, International

Soccer (escape character 0x0F), Albedo

It is even possible to split the track into several “pseudo-sectors”. For example in Albedo the track is
split into 5 pseudo-sectors

2.1.14 Hidden Data into GAP (HDG)
 Description: It is possible to write hidden data into any gap. However hidden data are

usually placed in the post DATA Gap (Gap of 40 bytes) as well as in the pre and post
index GAP (respectively 664 and 60 bytes on standard diskettes). See “copy me I want to
travel” from Claus Brod for a complete explanation and some interesting examples. There
are some known sequence described in Hidden data using spurious sync sequence.

 Creation: Extra data can be written into Gap only during the write-track command. It is
recommended to use Sync Marks in front of the data to be able to read them correctly.

 Detection: You need to use a read-track command to be able to read the inter-sector
information. But it hard to find this information if you do not know what and where to look
for. Therefore some heuristic need to be used (e.g. presence of sync marks into GAP).

 Duplication: Although it is difficult to detect, it is easy to reproduce with the write-track
command.

 Emulation: Requires storing the track information in the preservation file.
 Example: Jupiter Masterdrive, Dragonflight, Union Demo

2.1.15 Hidden data into nonstandard tracks (HDT)
 Description: It is possible to hide data into a nonstandard track.
 Creation: Only possible on an Atari if no invalid bytes are used.
 Detection: Use the read track command.
 Duplication: Not possible if invalid bytes used.
 Emulation: Requires storing the track information in the preservation file.
 Example: Realm of the Troll track 79.0

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://www.clausbrod.de/cgi-bin/view.pl/Atari

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 16 / 77

2.1.16 Invalid Data in Gap (IDG)
 Description: During the format command character loaded into the data register of the

WD1772 is written to the disk. However the characters $F5 and $F6 are used to write the
Sync Marks and the character $F7 is used to generate of two CRC bytes. This implies
that it is not possible to have a character ranging from 245 through 247 ($F5-$F7) inside
any of the GAPs3. Reading these characters into GAPs requires using a read-track
command. In order for these invalid characters to be read correctly with a read-track
command they are usually preceded by one or several sync character. Be aware that the
byte $F7 can be used to escape special character (see WD1772 MFM track format
language).

 Creation: It is not possible with the WD1772 to write a character within the range 245-
247 into any GAP. Therefore writing invalid character into GAPs requires mastering
machines.

 Detection: Can easily be done with a read-track command.
 Duplication: Require special hardware.
 Emulation: It is necessary to save the complete content of the track.
 Example: Operation Neptune & Bob Morane uses 0xF7 as gap bytes

2.1.17 Invalid Sync-mark Sequence (ISS)
 Description: A normal Sync mark sequence is composed of 3 Sync Marks (3 x $A1or

3 x $C2) followed by an Address Mark (IAM = $FC, IDAM = $FE, DAM = $FB, or DDAM
= $F8). Any other sync sequence is considered as invalid. Note that an invalid sequence
is usually used to sync up the data separator in order to read data into gap or for the Data
track protection. But it is also abnormal to have less than 2 or more than 3 Sync Marks in
sequence. See also Invalid Sync sequence.

 Creation: It is quite easy to create an invalid sync mark sequence during format by
sending appropriate information to the FDC using the write-track command.

 Detection: Only possible with the read-track command as the read-sector command
just ignore invalid sync mark sequences.

 Emulation: Requires storing the track information in the preservation file.
 Duplication: Easy by software.
 Example: Barbarian (one Sync alone on Track 0, series of Sync on Track 48 & 62)

2.1.18 Partially formatted track (PUT)
 Description: Inside what looks like an

unformatted track it is possible to hide a
sector.

 Creation: This kind of track can only be
created using special hardware.

 Detection: The program verify that it can
only reads the known sector and that no
other sector exist.

 Emulation: Requires to store the content of
the read track command in the preservation
file.

 Duplication: Requires special hardware.
 Example: Eco tracks 77 & 79

3 Note that it is not possible to modify the GAP2 or GAP3b ($00). Therefore writing hidden
bytes must be done in GAP1 and/or GAP3a and/or GAP4

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 17 / 77

2.1.19 Fuzzy Sector (FZS)
 Description: A sector that contains fuzzy bits. Reading

this sector several times returns different data.
 Creation: Cannot be created on Atari, requires mastering

machines. Please refer to the fuzzy bits section.
 Detection: The flowchart on the right describes a copy

recognition routine that tests for fuzzy bytes in the data
field (patent 4,849,836). The protected sector that contains
fuzzy bytes is read several times and randomness of the
returned data is checked. If the same data is read several
times on the protected sector the program is not executed.
Very often, as in Dungeon Master, the protection is verified
several times during execution of the game/program.

 Duplication: Difficult and requires special hardware.
 Emulation: The preservation file should have an indicator

to record the fact that a sector has Fuzzy bytes. Usually
the first and last 32 bytes of a fuzzy sector do not contain
fuzzy bytes. It is also good to store information about bits
that have changed in the different read operations.

 Example: TODO

2.1.20 Fuzzy Track (FZT)
 Description: This is somewhat similar to Fuzzy Sector: the

protected track that contains fuzzy bits is read several
times and randomness of the returned data is checked.
This is usually done in specific areas as explained below.

 Creation: Cannot be created on Atari, requires special
hardware. Please refer to the fuzzy bits section.

 Detection: If you know the location of the fuzzy bytes, it is easy to read the same data
several times and to check that returned data are different. However detecting fuzziness
in a read track without specific information is difficult because there are many reason why
a read track returns random data in several places. For example the beginning of a track
reads differently until the first sync because the position where the read track starts vary.

 Duplication: Difficult and requires special hardware.
 Emulation: The preservation file should have an indicator to record the fact that a track

has a Fuzzy data track. Note that Pasti STX does not support this kind of protection.
 Examples: Power Drift (track 1 side A of floppy disk 2). Vroom.

START

Store read data

count = 0

Read copy

protected sector

count++

Read copy

protected sector

same data

count > n

Execute Program

END

YES
NO

NO

YES

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 18 / 77

2.2 Protections based on timing
This section describes the protections based on variations of the standard 4 µs cell bit-rate.
Although different techniques are used, the result of using bit-rate variation is always the
same (with the exception of NFA): the overall time-length of a byte read from the drive, is
different from a “normal 32 µs byte”. Therefore detection of this protection requires to be able
to measure timing information when reading the block of bytes that compose a sector.

2.2.1 Long / Short Sector (LGS & SHS)
 Description: This kind of sector can be created by writing a sector of a track with an

apparent rotation speed of the drive slightly above or below the normal speed. In practice
this is obviously not done by varying the rotation speed of the drive but by changing the
bit-cell clock. This results in a reading time for this sector above or below the reading time
of a “normal sector”. The IBM standard specifies that the FDC circuitry should handle a
variation of the drive’s rotation speed within ± 2% range. Therefore the DPLL of a FDC is
supposed to accept at least a 4% variation. But in practice the WD1772 DPLL (See
WD1772 DPLL Input Circuitry) can handle at least 10% variation for MFM encoding (as
described in this DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 µs bit
width) and to still be guaranteed to read the data correctly. However the resulting sector
will be longer or shorter than a normal sector. The most famous usage of this protection
was done by Rob Northen in the Copylock (RNC) protection mechanism4 (see an
interview with Rob Northen): in this case the bit width is changed to approximately 4.2µs
(about 4 to 5% variation) to result in a shorter sector. The beginning of the sector (for
about 32 bytes) is written at normal speed so that we are sure that the data in this section
are always read correctly.

 Creation: Cannot be done on an Atari. It requires mastering machines with the capability
to vary the bit cell width on the fly.

 Detection: can’t be done with standard TOS call. It requires to use specific routines to
measure the time it takes to read the bytes in the short/long sector.

 Duplication: Difficult and requires special hardware.
 Emulation: The preservation file should store timing information about the sector.
 Example: Populous - Track 0 Sector 6, Back to the Future (T0-S6)

4 According to vauvillf: there has been 2 RNC. The old one used for example on Arkanoid2,
and Thundercats… It was possible to copy RNC-1 with the acopy program (only 2 to 3
times). Then there was a big evolution of the RNC protection sometime in 1988: with this one
it was no more possible to copy the protection by software, and it was also using the famous
trace decoding loop. Apparently the description provided here refers to the RNC-2 protection.

http://www.codetapper.com/amiga/interviews/rob-northen/
http://www.codetapper.com/amiga/interviews/rob-northen/

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 19 / 77

2.2.2 Long/Short Track (LGT & SHT)
 Description: This kind of track can be created by writing all bytes of a track with an

apparent rotation speed of the drive slightly above or below the normal speed. This
results in a track that contains more or less bytes than a normal 6240 bytes track. In
practice this is obviously not done by varying the rotation speed of the drive but by
changing the bit-cell width. The IBM standard specifies that the FDC circuitry should
handle a variation of the drive’s rotation speed within ± 2% range. Therefore the DPLL of
a FDC is supposed to accept at least a 4% variation. But in practice the WD1772 DPLL
(See WD1772 DPLL Input Circuitry) can handle a 10% variation for MFM encoding (as
described in the DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 µs bit
width) and to still read the data correctly.

 Creation: It requires special mastering machines that can vary the bit cell width on the
fly.

 Detection: You can use a read track command. The normal track length is around 6240
bytes and it is sufficient to checks that the track has more (or less) than a 5% above the
nominal value (e.g. less 6027 in Arkanoid).

 Duplication: Difficult and requires special hardware.
 Emulation: The preservation file should store timing information about the track as well

as the number of bytes of the track.
 Example: Arkanoid , Indiana jones last crusade, Guntlet II, Garfield, speedball

Awesome (T79 < 6000 bytes)

2.2.3 Sector Bit-rate Variation (SBV)
 Description: This is a more difficult to detect bit-rate variation. A sector is divided into

several segments. Each of them uses a “drive rotation speed” slightly above or below the
normal speed. By using faster and slower segments in the same sector it is possible to
have the timing of these segments to compensate resulting in a sector with a normal
overall timing. For example the Macrodos protection from Speedlock Associates divides
a sector into 4 segments with normal-faster-slower-normal rotation speed resulting in an
overall standard time length.

 Creation: Requires special hardware that have capability to vary the bit width.
 Detection: It is quite difficult to detect this protection because the overall sector length is

the “normal” length. It is therefore necessary to measure the timing of blocks of
characters (usually multiple of 16 using DMA transfer) that compose a sector and to
compare them to standard block length to check for specific above or below patterns.

 Duplication: Require specific hardware
 Emulation: The preservation file should store detail timing information about the sector.

On Atari it is only possible to store timing information about reading a 16 bytes block.
 Example: Golden Axe, Colorado, Starblade, Treasure Trap, Damocles

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 20 / 77

2.2.4 No Flux Area (NFA)
 Description: A track that contains a very long area without reading flux transitions.

Note that this is quite different from an unformatted area (no flux transitions recorded)
because reading an unformatted area return many random flux transitions due to the fact
that the gain of the amplifier (ACG) on the read channel is pushed to its maximum
resulting on picking up noise on the head. In order to produce such area some tricks
needs to be used as explained in the No Flux Area on Disk section. This is difficult to
produce even with specialized hardware.

 Creation: Requires specific hardware.
 Detection: No Flux Area result in reading 0x0000 MFM word in the FDC shift register (no

clock transition and no data transition). However the WD1772 FDC only allow to read the
data bytes of the MFM word but not the clock bytes. It is therefore not possible to directly
check that the clock bytes in an NFA are also null. This is why the NFA protection places
the no flux area in a sector within another sector, where the included sector is shifted by
a half-cell. The including sector allows to read the “data part” of the NFA and the included
sector allows to read the “clock part” of the NFA. For more information refer to Checking
NFA with the WD1772 section.

 Duplication: Difficult and requires special hardware.
 Emulation: The preservation file need to save the track data and also needs to save the

two sectors that allow to read the data and the clock.
 Example: Turrican.

Here is an example of a NO Flux Area that is located over the index. As indicated the NFA is
4.27ms long, starts before the end of the track, and wrap around the index.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 21 / 77

Chapter 3. Preservation of Atari floppy disks
Information presented in this document about protection mechanisms can help in the
design of techniques/programs for duplication or preservation of original Atari diskettes
with the following philosophy:

 A preservation technique should always do the most to ensure the integrity of the preserved
data. The preserved data should operate just like the original and not remove any protection, or

modify the program being preserved in any way. The preservation technique must do the up

most to check that the preserved data is identical to the original.

Specially designed programs can duplicate key disks for many of the “simple” protections
presented here. But duplication of key disks using more advanced protections requires using
specially designed hardware like the vintage Discovery Cartridge or the recently released
KryoFlux and SuperCard Pro devices. Analog hardware copiers, like the Blitz cable and
associated software, can sometime create a working copy of a protected diskette but they do
not fulfill the above requirements of producing a copy identical to the original.

Preservation has different meanings for different people but it can be classified into two
categories:
 A “real preservation” is intended to save all the required information from a floppy disk so

that it is not only possible to emulate the original FD but it is also possible to physically
duplicate the original FD. For example the files produced by the Discovery Cartridge,
the KryoFlux, and the SuperCard Pro devices allow to emulate or to backup protected
disks.

 An “emulation preservation” is intended to save enough information from a floppy disk so
that it is possible to emulate the behavior of the original FD in a software or hardware
emulator. For example the files produced by the Pasti imager allow to emulate protected
disks. However it is not possible to recreate a FD from Pasti files.

It is interesting to note than most emulation / duplication programs do not care about (and
sometimes can’t detect) the detailed underlying protection mechanisms used. They just store
enough information to replicate the effect of a specific protection. For example they detect
fuzzy bytes but they do not care if they result from bits in Ambiguous areas, or from bits rate
violation.

In the following sections we are going to explain how to correctly use several devices
specially designed to preserve Atari floppy disks.

3.1 Cleaning a floppy disk to create correct image
Here are some basic rules to follow to create the best possible image:
 Use a known good original: Always use original disk that has not been modified.
 Write protect your original: In order to keep an unmodified disk always make sure that the

original have the protect notch in the correct position at all time you use the disk including
during the imaging operation.

 Clean your original: Atari floppy disks games are getting very old. They are prone to be
dirty even if not used too much because of the environment. This results in deteriorated
magnetic signal picked up by the read head. Carefully clean your disks with rubbing
alcohol and cotton swabs. Rotate the disk in its jacket, cleaning the surface until no more
residue is found on a clean cotton swab.

 Clean your floppy drive head: After reading several disks the head will have accumulated
a lot debris. Clean the drive’s head with a commercial head cleaner or by using the same
rubbing alcohol and cotton swab technique used to clean your disks.

3.2 Why do we need several revolutions for preservation?
You might be tempted to sample flux transition for only one revolution in order to save space
on hard disk. However for preservation this won’t work for the following reasons:

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 22 / 77

 For duplication you can usually sample the flux transitions of only one revolution. You
should get a perfect backup of the original floppy if
 your original is in perfect condition,
 you have set all parameters of you iamging device correctly, and
 If the floppy you use for the backup is also in perfect condition.

 For preservation you must sample the flux transitions of at least three revolutions. But
it is recommended to sample five revolutions in order to be able to verify the integrity of
the sampled data as explained below.

The rational for using five revolution is the following:
 By definitions fuzzy bytes are detected by reading several times the same bytes and

comparing if the values are different. Therefore this kind of protection implies to sample
at least two revolutions but three or more is preferred (majority rule).

 Many Atari games uses protections based on shifted tracks. In such a case the region
“under” the index belongs to an ID or a DATA field and therefore it is not possible to
start reading or writing data at the position of the index (this must be done at the
location of the track write splice). Therefore this kind of protection implies to sample at
least two revolutions. The combination of the last two requirements result in the
necessity to sample at least three revolutions.

 Because of the age of the floppy disks, the magnetic signal picked up by the read head
is often distorted. A program like AUFIT uses advance DPLL algorithm that allows to
recover many imperfection on the read flux transitions but unfortunately this is not
always sufficient. By sampling extra revolutions it is possible to combine data from
multiple revolutions to recover the original information. For example Aufit is able to
select and use a correct sector (one with a good CRC) among multiple revolutions. The
more revolutions you have imaged the more chances you have to recover!

Therefore based on the above if you want to reliably preserve information from a floppy disk
it is recommended that you use 5 revolutions.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 23 / 77

3.3 Kryoflux short presentation
Using Kryoflux for preservation is pretty simple. Start the DTC GUI
(kryoflux-ui.jar) and in the select output field of the control section
select multiple. This open a new window and here select
Kryoflux stream files, preservation and CT Raw image. This will

save the stream RAW files
in a separate directory as
well as the CTA raw file.

By default Kryoflux device
settings are set to preserve
5 revolutions and sample
up to the maximum track number.

Therefore you just need to specify the image path (in
file settings), the output name and start imaging.

3.4 Supercard Pro short presentation
Supercard Pro can be used to just backup (duplicate) Atari floppy disks or it can be used for
real preservation. These two usages have different requirements:
 For duplication you can usually sample the flux transitions of only one revolution. If your

original is in perfect condition, if you have selected the correct mode, and if the floppy you
use for the backup is also in perfect condition then you should get a perfect backup.

 For preservation you must sample the flux transitions of five revolutions in splice mode.

For Supercard Pro you must change the
Revolutions value to 5 and the end track
number to 82 each time you want to preserve
a floppy as these values are not automatically
saved (even using the save configuration
command).

http://www.kryoflux.com/?page=kf_features
http://www.kryoflux.com/?page=kf_features
http://www.cbmstuff.com/proddetail.php?prod=SCP
http://www.cbmstuff.com/proddetail.php?prod=SCP

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 24 / 77

Chapter 4. Technical Information
This chapter contains technical information that helps to understand in detail how data are
written on floppy disks and how the WD1772 really work.

4.1 Atari Low-Level Formats
The Atari ST uses the Western Digital WD1772 Floppy Disc Controller (FDC) to access the 3
1/2 inch (or to be more precise 90mm) floppy diskettes. Western Digital recommends to use
the IBM 3740 Format for Single Density diskette and to use the IBM System 34 Format for
Double Density diskette. Actually the default format used by the Atari TOS is slightly different
(closer to the ISO Double Density Format) as it does not have an IAM byte (and associated
the associated GAP), before the first IDAM sector of the track (see diagram below).
However the WD1772 (and therefore the Atari) is capable of reading both format without
problem but the reverse is usually not true.

IBM System 34 Double Density Format (produced on a DOS machine formatting in 720K)

ISO Double Density Format.

Below is a detail description of the Standard Atari Double Density Format created by the
early TOS.

Note: Many different conventions have been used to decompose and name the GAPS of a
track. This document uses a GAP numbering scheme which is a combination of the IBM and
ISO standards. It also decomposes the GAP between the ID record and the DATA record.
Usually only one gap is described between these two records but in this document it is
decomposed into an ID postamble gap (Gap 3a) and a DATA preamble gap (Gap 3b). This
allows a more detail description, but of course they can be recombined into one more
standard gap (Gap3). Although not shown in the diagram below a floppy formatted on an IBM
has an extra IAM (index address mark) before the first sector. In that case the Gap1 is
decomposed into two gaps: A post index gap (Gap1a) and a post IAM gap (Gap1b).

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 25 / 77

The table below indicates the values of the different gaps usually used for standard Atari
diskette with 9 sectors of 512 user data bytes. It also indicates the minimum acceptable
values (as specified in the WD1772 datasheet) of these gaps when formatting nonstandard
diskettes.

NAME STANDARD VALUES (9
SECTORS)

MINIMUM VALUES
(DATASHEET)

Gap 1 Index postamble 60 x $4E 32 x $4E
Gap 2 ID preamble 12 x $00 + 3 x $A1 8 x 00 + 3 x $A1
Gap 3a ID postamble 22 x $4E 22 x $4E
Gap 3b Data preamble 12 x $00 + 3 x $A1 12 x $00 + 3 x $A1
Gap 4 Data postamble 40 x $4E 24 x $4E
Gap 5 Index preamble ~ 664 x $4E 16 x $4E

Standard Sector Gaps Value (Gap 2 + Gap 3a + Gap 3b + Gap 4) = 92 Bytes / Sector
Minimum Sector Gaps Value (Gap 2 + Gap 3a + Gap 3b + Gap 4) = 72 Bytes / Sector
Standard Sector Length (Sector Gaps + ID + DATA) = 92 + 7 + 515 = 614 bytes

Note that the minimum values as specified in the WD1772 datasheet are not respected in the
case of a track formatted with 11 sectors:
Minimum Sector Length (Sector Gaps + ID + DATA) = 72 + 7 + 515 = 594

The ID and DATA preamble are used to lock the PLL and should normally be kept as 12 $00
bytes. The FD format do not reserve a write splice byte (where the head write current is
switched on or off) and therefore it should be considered as part of the data preamble field
for format and write operations, and as part of the ID postamble for read operations.

One complete ID/DATA segment looks like this

22 x 4E 40 x 4E12 x 00 3 x A1
DAM FB or
DDAM F8 User Data 512 Bytes CRC1 CRC 212 x 00 3 x A1IDAM FE Track # Side # Sect # Size CRC1 CRC 2

Write Gate

ID Segment

ID Field ID postamble Data preamble Data Field Data postambleID preamble

Data Segment

As this format does not define any precise location write splice field, it should be included as
part of the DATA preamble field for format and write operations and as part of the ID
postamble for read operations.

4.1.1 Format for 9/10/11 Sectors of 512 Bytes

Note that the 3 1/2 FD are spinning at 300 RPM which implies a 200 ms total track time. As
the MFM cells have a length of 4 µsec this gives a total of about 50000 cells and therefore
about 6250 bytes per track. The table below indicates possible values of the gaps for tracks
with 9, 10, and 11 sectors.

Name 9 Sectors: # bytes 10 Sectors: # bytes 11 Sectors: # bytes

Gap 1 Index postamble 60 60 10

Gap 2 ID preamble 12+3 12+3 3+3

Gap 3a ID postamble 22 22 22

Gap 3b Data preamble 12+3 12+3 12+3

Gap 4 Data postamble 40 40 1

Total Gap 2-4 92 92 44

Record Length 614 614 566

Gap 5 Index preamble 664 50 20

Total Track 6250 6250 6250

Respecting all the minimum value on an 11 sectors / track gives a length of:
 L = Min Gap 1 + (11 x Min Record Length) + Min Gap 5 = 32 + 6534 + 16 = 6582

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 26 / 77

(which is about 332 bytes above max track length). Therefore we need to decrease each
sector by about 32 bytes in order to be able to write such a track. For example the last
column of the table above shows values as used by Superformat v2.2 program for 11
sectors/track (values analyzed with a Discovery Cartridge).

As you can see the track is formatted with a Gap 2 reduced to 6 and Gap 4 reduced to 1!
These values do not respect the minimum specified by the WD1772 datasheet but they make
sense as it is mandatory to let enough time to the FDC between the ID block and the
corresponding DATA block which implies that Gap 3a & 3b should not be shortened. The
reduction of Gap 4 & 2 to only 7 bytes between a Data Field and the next ID Field does not
let enough time to the FDC to read the next sector on the fly but this is acceptable as this
sector can be read on the next rotation of the FD.

This has an obviously impact on performance that can be minimized by using sectors
interleaving. But it is somewhat dangerous to have such a short gap between the data and
the next ID because the writing of a Data Field need to be perfectly calibrated or it will collide
with the next ID block. This is why such a track is usually reported as “read only” (as in DC
documentation) and is sometimes used as a protection mechanism.
Of course you have more chance to successfully write 11 sectors on the first track (the outer
one) than on the last track (the inner one) as the bit density gets higher in the latter case. It is
also important to have a floppy drive that have a stable and minimum rotation speed
deviation (i.e. RPM should not be more than 1% above).

4.1.2 “Standard” 128-256-512-1024 Bytes / Sector Format

The table below indicates standard (i.e. classical) gaps values for tracks with sectors of size
of 128, 256, 512, and 1024.

Name
29 sectors of
128 bytes

18 sectors of
256 bytes

9 Sectors of
512 bytes

5 Sectors of
1024 bytes

Gap 1 Index postamble 40 42 60 60

Gap 2 ID preamble 10+3 11+3 12+3 40+3

Gap 3a ID postamble 22 22 22 22

Gap 3b Data preamble 12+3 12+3 12+3 12+3

Gap 4 Data postamble 25 26 40 40

Total Gap 2-4 75 77 92 120

Record Length 213 343 614 1154

Gap 5 preamble 73 76 664 480

Total Track 6250 6250 6250 6250

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 27 / 77

4.2 WD1772 DPLL Input Circuitry

4.2.1 Description

This section provides basic information on the DPLL of the WD1772 and how the decoded
bits are entered into the FDC shift register. It does not describe the data separator which is
based on usage of an AM (Address Marks) detector to find a specific pattern in the shift
register (usually during gaps) described latter in this document.

This is a simplified block diagram of the input circuitry of the FDC:

DATA SHIFT

REGISTER

SYNC DETECTOR

PLL DATA

SEPARATOR

FDC COMMANDs

Flux

Reversals

CLOCK/DATA

DECODER

Outputs

The WD1772 uses a digital phase lock loop (DPLL) circuit for reading the input data
transmitted from FD media. Inspection windows are established that have duration
proportional to the frequency of arrival of the data, and start/stop times that can be adjusted
so that subsequent data bits will be received in the middle of the inspection windows. To
achieve this, the DPLL circuitry applies frequency and phase corrections that compensate
the input data frequency drift. This drifts are usually due to unsteadiness of the motor drive
speed (the frequency drift), and the migrations of the magnetic reversals area (the phase
drift). The DPLL used inside the WD1772, as well as many other FDC build in the 80s,
implements an algorithm described in the public US patent 4,870,844. The patent is rather
complex and in this section I will only highlight some of the most important aspects of the
DPLL algorithm that are useful to understand the behavior in the context of fuzzy bits,
long/short track, etc.

If you want to fully understand the behavior of the DPLL please refer to the patent. Note that
in order to provide precise results my Aufit, Analyze, KFAnalyze, and KFPanzer programs
fully implement the DPLL algorithm as described in the patent.

Typical MFM encoding

As we can see the nominal values for the possible reversals spacing in DD MFM (1MB
mode) are: 4µs, 6µs, or 8µs.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 28 / 77

Let’s first review a typical Double Density MFM data encoding:

1 1 0 0 0 1 10

4µs 6µs 6µs 8µs4µs

0 0 1 1 0 0 0 0

1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0

Clock Bits

Data Bits

Encoded bits

Flux Reversals

Read pulses

Timings

Inspection
windows

Magnetic
Domains

The data input circuit of the FDC ensures that the data pulses received are converted into
data bits and stored in the data shift register (DSR). For that matter the digital phase lock
loop defines inspection windows that repeat every 2µs (a half cell size). A one is input to the
shift register if a data pulse is received at any time during one inspection windows; otherwise
a zero is stored in the shift register as the value for the current bit.

The period of the inspection windows is gradually adjusted (expanded or shortened) to
compensate an eventual frequency shift affecting the input data transfer. This frequency
correction is computed based on the history of the location (relative to the inspection
window) of the last three flux reversals.

Ideally, individual pulses
should be located in the
middle of the inspection
windows. To achieve this,
the start and stop times of
the inspection windows are
adjusted to compensate for
deviation (from ideal) in
time of arrival of the most
recently detected data
pulse. This phase correction is done proportionally to the distance of the reversals with the
middle of the inspection window.

The proper ratio of phase and frequency correction provided in the loop is carefully balanced
so that the DPLL is fast settling but stable. A large amount of phase correction cause the
loop to settle faster but also make it more sensible to noise. On the other hand if too much
frequency correction is used, the loop can become unstable.

It is interesting to note that the DPLL as defined in the patent allow an input frequency
variation of up to 9%. This corroborates the actual measurement made with a WD1772 that
correctly interprets bits with a variation of at least 9 to 10 % for DD MFM (and about 100% for
SD FM!). Note that these values are well above the variation used by the Copylock and
Macrodos protection mechanisms (usually less than 5%) and therefore the data within this
kind of sector should be read correctly.

Data Input

Inspection Windows

before phase adjust

Inspection Windows

after phase adjust

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 29 / 77

4.2.2 WD1772 Detection of Fuzzy Border Bits

With the above information it is now easy to understand that if a bit reversals happens close
to the border of an inspection window (also called Ambiguous area) it will be detected into
the first or the next inspection window based on small variation of the drive rotation speed
between two read-sector commands and this will therefore result in pseudo random values
returned (fuzzy bits).

For example having a reversal 5µs apart from the previous one can be interpreted as a
reversal after 4µs or a reversal after 6µs based on small frequency fluctuation of the rotation
speed between two reads. One might argue that it is not possible to make sure that these
“marginal reversals” will be positioned correctly due to the fact that the rotation’s speeds of
different drives are somewhat different and therefore precise reversals timing on a floppy
diskette cannot be guaranteed. But in practice this is where the frequency and phase
correction of the WD1772 DPLL comes into play. As explained above the inspection window
will have it size (i.e. frequency) and position corrected based on the input reversals stream
after reception of only a few reversals. Therefore the DPLL of the FDC automatically adjust
the frequency of inspection windows for any acceptable (about 10%) variation of drive speed
and adjust the phase so that a “normal reversal” will be perfectly in the middle of the
inspection window and a “marginal reversal” will be perfectly at the border of the inspection
window.

This also explains why, in most cases, “fuzzy bits” are used in “compensating pair”: for every
two subsequent fuzzy bits the first reversal is placed at one extreme (e.g. at the beginning) of
the inspection window and the “compensating reversals” of the next fuzzy bit at the other
extreme (e.g. at the end) of the inspection window. By using this kind of “compensating bits”
we guarantee that the frequency and the phase of the inspection windows are (almost) not
affected.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 30 / 77

4.3 WD1772 MFM track language
During the write track command (format) the WD1772 needs to be told to perform specific
actions as:
 write special sync marks with invalid MFM encoding,
 write special address marks that identifies the beginning of ID/Data fields, and
 write the content of the CRC register.

Therefore a range of values from $F5 to $FF has been defined as having special meaning
(what I call WD1772 track language) for the FDC:

$00-$F4 Are not interpreted by the WD1772. This means that during all read or write
commands (including read/write track) nothing special is done on these MFM
bytes and are therefore transferred directly.

$F5  During read track, read sector, read address, write sector commands this
byte as no special meaning.

 During a write track command this byte (unless escaped by a $F7 byte) is
written as an $A1 sync byte with partially missing clock bit ($4489) and
the FDC internal CRC register is preset to the value $CDB4.

$F6  During read track, read sector, read address, and write sector commands
this byte as no special meaning.

 During a write track command this byte (unless escaped by a $F7 byte) is
written as a $C2 sync byte with partially missing clock bit ($5224).

$F7  During read track, read sector, read address, and write sector commands
this byte as no special meaning.

 During a write track command this byte (unless escaped by a $F7 byte)
forces the FDC to write the content of the CRC register. Any byte placed
after a $F7 byte is not interpreted (escaped). In other word bytes $F5
through $F7 are treated as normal bytes when placed after a $F7 byte.

$F8, $F9 Deleted Data Address Mark (DDAM) – Normally $F8
 During a read track, read address, write track, and write sector command

this byte as no special meaning.
 During a read sector command if this byte is located after three $A1 sync

marks it indicates the start of the sector “deleted data field”. The FDC
sync mark detector is switched off after reception of this byte.

$FA, $FB Data Address Mark (DAM) – Normally $FB
 During a read track, read address, write track, and write sector command

this byte as no special meaning.
 During a read sector command if this byte is located after three $A1 sync

marks it indicates the start of the sector “data field”. The FDC sync mark
detector is switched off after reception of this byte.

$FC-$FF ID Address Mark (IAM) – Normally $FE
 During a read track, read sector, write track, and write sector command

this byte as no special meaning.
 During a read address command if this byte is located after three $A1

sync marks it indicates the start of the sector “ID field”. The FDC sync
mark detector is switched off after reception of this byte.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 31 / 77

4.4 WD1772 Synchronization (sync marks detection)
With MFM encoding a clock is only added for two consecutive 0 data bits and therefore it is
not possible to directly differentiate between clock and data bits on arbitrary sequence of bits.
At the beginning of a track the controller don't know where the byte boundaries are located
and so usually begins in the middle of a byte to read. The content of the track appears to be
shifted by some bits and actually the first few bytes (usually two) have nothing to do with the
true content of the track. This is also due to the fact that the DPLL is not yet synchronized.

There is a long string of zero's sequence encoded at the beginning of each ID and DATA
field. This sequence provides to the DPLL enough time to adjust the frequency and center
the inspection window. This is especially important for the DATA field because a Write splice
occurs when the read/ write head re-write a data field. The slight variations in the rotational
speeds cause the first flux change to occur in different positions for each write operation and
therefore the DPLL needs to adjust to this new frequency/position. But this sequence is not
really part of the synchronization.

It is only after receiving a synchronization mark $A1 or $C2 with partially missing clock bit
that the controller reads the bytes with the correct byte boundary. These 2 special bytes with
partially missing clock bits are called Sync Marks. In practice a sector ID or DATA field starts
with a sequence of 3 consecutive Sync Marks followed by an Address Mark5 (IAM, DAM, or
DDAM) as described in the track format language.

It is interesting to note that the first synchronization byte in a sequence of three $A1 sync
marks is always read incorrectly by the WD1772. The first synchronization byte is
inaccurately decoded as a $C2, a $14, or even sometimes a $0A byte. If the controller is
incorrectly shifted by a half bit (indicated by the fact that a sequence of $00 bytes is read as
$FF bytes) the data and clock pulses are swapped.

The following table detail the usage of the Sync marks by the WD1772

$A1 Sync Mark with missing clock bit between bit 4 and 56 ($4489)
 This byte is used to synchronize (differentiate clock & data bit) the FDC

on bytes boundary.
 $A1 sync mark detection is active at all time during a read track

command.
 $A1 sync mark detection is deactivated after reception of 3x$A1 followed

by an IAM during a read address command.
 $A1 sync mark detection is deactivated after reception of 3x$A1 followed

by a DAM/DDAM during a read sector command.

$C2 Sync Mark with missing clock bit between bit 3 and 4 ($5224)
 This byte is used to synchronize the FDC on byte boundary.
 $C2 sync mark detection is active at all-time only during a read track

command but not active during a read address or read sector command.

Note that neither the $4489 nor the $5224 encoding violates the 1,3 RLL rules (sequence
of 4 consecutive 0) and therefore this is why it is possible to find in a bit stream some
sequences that are similar to the $C2 synch mark. This is known as false sync mark
detection problem during a read track command and it is detailed in the next section.

5 For the address marks characters between $F8 and $FF the least significant bit is always
ignored by the WD1772 and therefore : $F8=$F9, FA=FB, FC=FD, $FE = $FF

6 The bits order is from MSB to LSB (the way they are sent) with first bit being numbered 0.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 32 / 77

4.5 False sync mark detection
As mentioned above the sync mark detection is enabled at all-time during the read track
command. The biggest problem is that synchronization is done not only on the $A1 and $C2
sync marks (with partially missing clock bit), but also on specific sequence of bits.

If you remember the normal id/data field preamble is a sequence of $00 (usually 12) followed
by 3 x $A1 sync marks. When a $00 byte (1010101010101010) is placed in front of an $A1
sync mark (0100010010001001) it results in a false $C2 sync mark (0101001000100100)
detection:
 10101010101010100100010010001001 $00+$A1(SM)

 0101001000100100 $C2(SM)

This explain why the id/data preamble is detected as $14 $A1 $A1 or $C2 $A1 $A1

More generally the WD1772 is resynchronized whenever the following combination of 9 bits
“000101001” appears in a bit stream. This can happen anywhere as the with the following
byte combinations:

 $29 and previous byte even (i.e. LSB set to 0)

 $52 or $53 and previous byte divisible by 4 (i.e. the two LSB set to 0)

 $A4-$A7 and previous bytes divisible by 8 (i.e. the three LSB set to 0)

 $14 and the following byte >= 128 (i.e. MSB set to 1)

 $0A, $8A and following byte with bit 7 cleared and bit 6 set (e.g. $43)

 $05,$45, $85, $C5 and following byte with bits 7, 6 cleared and bit 5 set (i.e. $21)

Non only the controller synchronizes to the presented sequence (i.e. $29), but it stays
incorrectly synchronized and therefore all the following bytes are shifted by multiple of "half
bit", which results in mix-up of data and clock pulses, and so the decoded bytes are totally
unrecognizable.

This error occurs everywhere on track 41. The value 41 is $29 in hexadecimal and therefore
all the address fields of these tracks are read incorrectly as well as the bytes following this
incorrectly decoded header.

False sync marks detection problem can be used for protection as explained in the document
Copy me, I want to travel by Claus Brod.

4.6 Overlapping Sync Mark
It is possible to find in the input stream some sequences of bits that contains overlapping
sync marks. We have 4 possible combinations of overlapping sync mark:
 $A1-$A1
 $C2-$A1
 $A1-$C2
 $C2-$C2

4.6.1 Overlapping $4489-$4489 ($A1-$A1)

We take the $4489 pattern and we try to find how it can overlap another $4489 pattern. We
find two following two cases:
0100010010001001

 0100010010001001

and
0100010010001001

 0100010010001001

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 33 / 77

4.6.2 Overlapping $5224-$4489 ($C2-$A1)

We take the $4489 pattern and we try to find how it can overlap a $5224 pattern. We find the
following two cases:
0101001000100100

 0100010010001001

and
0101001000100100

 0100010010001001

4.6.3 Overlapping $4489-$5224 ($A1-$C2)

We take the $5224 pattern and we try to find how it can overlap a $4489 pattern. We find
only one possible case:
0100010010001001

 0101001000100100

4.6.4 Overlapping $5224-$5224 ($C2-$C2)

If we take two $5224 pattern and we try to find how they can overlap. We can see that this is
not possible.

4.6.5 Invalid Sync sequence

A “normal” sync sequence is composed of three $4489 sync mark character ($A1 with
missing clock) used in front of an IAM. Any other sequence of sync marks should be
considered as a non-normal sequence that I refer as an invalid sync sequence. You will find
in this document several places where the sync marks $4489 or $5224 characters are used
for special usage.

It is interesting to note that in order to be read correctly an ID field or a DATA field must be
preceded by exactly by 3 x $4489 sync marks. For example if the sync sequence is
composed of two or four sync marks the ID field is not detected by the WD 1772.

However there is a special sequence that can be used instead of the normal 3 x $4489 sync
mark sequence: 7 x $4489.

This works because the following happen in the WD1772:
 After reception of the first 3 x $4489 the FDC is ready waiting to get an IAM
 At reception of the $4489 character the FDC detect a false sync sequence because it is

not an IAM. Therefore the fourth $4489 is discarded and the FDC return in sync
sequence search with the sync detector kept active.

 The next 3 sync marks are detected correctly as if they were a new sequence of 3 sync
mark (even though they are sync marks 5, 6, and 7).

 At the reception of the IAM the sync detector in the FDC is de-activated and the sector is
read normally.

Note that should also work for a sync sequence where we add a multiple of 4 x $4489 sync
character in front of the normal sync sequence (i.e. 11, 15, 19…).

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 34 / 77

4.7 WD1772 Bug in Read/Write Track commands
When you read a normal track you expect to get a number of bytes around 6250 bytes and
on a slow track you may get may be up to 6600 byte. But under certain circumstances you
get much more, in fact you might even get an almost infinite number of bytes.

How is this possible and when does it happen?

Apparently this happen when reading a track that have sync mark placed “over the index
pulse”. Here is the explanation that I am aware of:
 Normally during read track command the FDC start on a first index pulse signal and

stops when it receive the next index pulse signal but if the FDC is busy processing a
sync byte then the index pulse is no longer recognized.

So a read track on this kind of track (i.e. with sync mark - $4489 or $5224 - over index)
sometimes the FDC does not properly detect the index pulse and therefore lots of extra bytes
are send to the DMA until it overflows. It seems that this also happen during the write track
command when you provide a sequence of $F5 or $F6 when reaching the index.

Therefore a program that reads track should be able to handle this problem for example in
Panzer during a read track command I set the number of DMA count to 40 (40*512 = 20480)
and reserved a buffer large enough to accommodate all these bytes.

Note that this does not happen systematically (probably due to rotation speed variation) so
you can read the same track correctly several times and get this problem at other times.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 35 / 77

4.8 WD1772 CRC Information

4.8.1 CRC Computation

The WD1772 documentation indicates that the CRC uses the CCITT CRC16 polynomial and
that the CRC register is preset to all ones ($FFFF) during the write track command when
the first $F7 byte is received (see WD1772 MFM track format language). This results to a
CRC value of $CDB4 at the end of a normal sync sequence of 3 x $4489.

In practice, probably for practical reasons, the CRC register is preset to $CDB4 each time a
$F5 character is received. This can be verified by writing a sequence with more or less sync
bytes than the normal three sync marks sequence (remember that you won’t be able to read
the corresponding sectors) and looking at the CRC result. Whatever is the number of $F5
sync marks written the CRC is always reset to $CDB4 by the last sync.

For example if you use the sequence $F5 $F7 you will see that the WD1772 writes the two
bytes $CDB4 (content of the CRC register) after the sync character.

No other character (including $C2 sync mark) presets the CRC to a predefined value.

It is interesting to note that any byte placed after a $F7 is transmitted unchanged (escaped)
by the WD1772. For example with the sequence $F7 $F5 the FDC will write two CRC bytes
followed by the $F5 byte. A sequence of repeating $F7 is sometime used in protection.

4.8.2 Playing with the CRC

We have seen that some protections are based on writing on purpose bad CRC in the ID or
DATA fields. Usually the checksum of an address or data field is calculated by the controller
but you can bypass this behavior and writes your own checksums to create errors. This is
often not detected by copy programs.

Let’s first create a broken checksum in an address field. This is relatively simple, because
address fields are written by using a write track command sequence like the following:

F5 F5 F5 FE 00 00 01 02 F7

This sequence of bytes writes an address field with track and head number 0 sector number
1 and size 2. The byte $F7 forces the controller to write the calculated checksum on the
floppy disk.

If we replace the $F7 byte by two $00 bytes with the following sequence:
F5 F5 F5 FE 00 00 01 02 00 00

This address field is read with a checksum error and the sector is unreadable7.

You can try the following sequence:
F5 F5 F5 FE F5 00 01 02 F7

The Sync byte $F5 within the address field generates a checksum error in the header to
read; because when writing the WD1772 calculates the checksum of the byte sequence

FE F5 00 01 02

But it is read:
FE A1 00 01 02

The checksums of these two bytes sequences are of course different and therefore you get a
CRC error which implies that you no longer can read the data field.

7 Remember that it is possible to read an id field with a wrong CRC using a read address
command, but it is not possible to read a sector with a CRC error in its header using a read
sector command.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 36 / 77

However it is simple to compute the checksum of the FE A1 00 01 02 sequence ($56AD) and
replace the $F7 byte by these bytes during format.

F5 F5 F5 FE F5 00 01 02 56 AD

Another interesting sequence is to write a $F7 sync byte in an address field and not get a
checksum error. You know that when writing consecutively two $F7 bytes on the disk the
second one is escaped. The first is interpreted as a request to write the checksum register
content and the one is explicitly written as $F7. For example with the following sequence:

F5 F5 F5 FE F7 F7 02 F7

The address here is specified with only three bytes ($F7 $F7 $02) because the first $F7
bytes when writing is translated into two CRC bytes. The resulting checksum is correct.

The address field is read as:
14 A1 A1 FE B2 30 F7 02 AA 14

The track number is read $B2 (178), the head is $30 (48), and the sector number is $F7
(247) than you cannot usually write on a floppy disk with the WD1772. A copy program trying
to write this header just as read will be generated a sector header like this:

14 A1 A1 FE B2 30 00 00

And that is of course quite different from the original.

By the way, you can see the very nice reproductive properties of the CRC Checksum. The
sequence starting with the byte, $FE, creates the checksum of $B230 (with the CRC register
initialized to $CDB4 after the last $A1) and if you send this checksum right back to the CRC
register the result is 0. This is how the controller works when it reads a data or address fields
and the associated checksum. If the CRC register contains zero the data or address field is
correct.

Similarly, you can also write a $F5 or a$F6 byte in an address field. Because after a $F7 byte
is written the following byte is unchanged (escaped).The sequence

F5 F5 F5 FE F7 F5 02 F7

is read
14 A1 A1 FE B2 30 F5.02

In a DATA field, a deliberate checksum error is more difficult to produce. If the data field of
the sector to write contains no bytes over $F4, we can directly write these bytes during
formatting (write track command) and like for the ID field write a fake checksum at the end of
the sector (for example 00 00) to generate the CRC error (instead of using the normal $F7
that would generate the correct two bytes checksum).

But if we need to write the data using a write sector command (so that any byte including
bytes over $F4 can be correctly written) the correct CRC will be written automatically at the
end of the command.

In that case, to generate a CRC error, it is possible to use the following procedure:
 First step: format the track with correct checksum and empty data in the sector

concerned.
 Second step: write the sector and stop the FDC command execution just before it writes

the checksum. The result is therefore a sector with new data but old checksum. Stopping
precisely the command before writing the checksum is difficult.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 37 / 77

4.9 No Flux Area on Disk
There has been a lot of debate around the so called No Flux Area on disk. This is a
protection's mechanism used on some floppies that results in absolutely no flux transitions
coming from the drive read circuitry for a long period of time (usually several milliseconds).

For some times it has been thought that this was obtained by doing a so called "strong
erasure" of areas of a disk. However this would be very difficult to create and it would not
produce the wanted effect:

 For one this can’t be done with the normal recording head/circuitry of a floppy drive
and therefore it would require to use modified drives.

 Secondly if such areas, with no magnetic flux transitions, existed on the floppy disk it
would cause the ACG of the read chain to be set to its maximum amplification value
and this would result in picking up noise from the head resulting in reading random flux
transitions which is not the case.

The following explanation of the No Flux Area has first been described by István Fabián
from SPS (see the reference section) and can be summarize as follow:

Bit-shift occurs on any NRZ recorded medium as a normal
consequence from read/write head operation. Data are written
when the read/write head generates a flux change in the gap of
the head, which causes a change in magnetization of the
medium oxide. In reading, a current is induced into the
read/write head when a flux transition on the medium is
encountered. The current change is not instantaneous, since it
takes a finite time to build up to peak and then to return to zero.
If flux transitions are close together, the current buildup after
one flux transition then declines, but it does not have time to reach zero before the second
transition begins. Consequently current pulses are summed by the read/write head, which
causes the peaks to be shifted. A No Flux Area is created by writing a large number of flux
transitions close enough (i.e. at a relatively high frequency). This will result in having the read
current never returning to zero and consequently this will result as no data pulse generated
on the read channel. Note that in this case the ACG is set to a normal amplification as the
input circuitry receives high frequency flux transitions even if no data is coming out of the
read channel.

4.9.1 Checking NFA with the WD1772

The next challenge is to check an NFA with a standard WD1772 Floppy disk controller?
Normally the WD1772 FDC can only read the data bits. Therefore a sector with NFA is read
as a sector filled of 0x00 bytes but it is normally not possible to check that the clock bits are
also 0x00bytes. To be able to check the clock bits the NFA protection uses an interesting
trick. Another sector is written within the first sector (SWS) that contains the NFA and this
sector contains 3 sync marks shifted by one bit cell. Therefore when you read the data for
this second sector you are actually reading the clock data from the first one!

Here is a dump made with KFAnalyze of the game Turrican where the data bytes are
displayed on the first line of the dump, and the clock bytes are displayed on the second line.

Detail buffer content for sector 0 with 1027 bytes

= DATA ID=0 1027 bytes @87082 us length=32637.85 CRC BAD CLK=3.97 TMV=0 BRD=1 DOI=0

 *** Fuzzy Sector *** starting at byte position 217

 0000 87082 4000 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 7f ff ff ff ff ff ff ff ff ff ff ff ff ff ff .•..............

 0010 87596 3968 00 a1 a1 a1 fe 07 00 10 03 bb 21 4e 4e 4e 4e 4e !NNNNN

 ff 0a 0a 0a 00 f8 7f e7 fc 00 4e 10 90 90 90 90 •...N.....

 0020 88103 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 0030 88614 3968 4e ff ff ff ff ff ff ff ff ff ff ff fe 14 14 14 N...............

 90 00 00 00 00 00 00 00 00 00 00 00 00 a1 a1 a1

 0040 89124 4000 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 38 / 77

We can see inside data block (starting with 0xFB DAM) the presence of 3 sync character
followed by the ID block for sector 16 (sector within sector). However if we look further down
we do not see the sync marks for the corresponding data block. Instead we see the presence
of 3 bytes with value $14 followed by a byte $00 and several bytes 0xFF. But if we look at the
line below (that contains the clock bytes) we can see that the 3 x $A1 sync bytes are in fact
located in the “clock” bytes. During the read command the sync mark detector of the
WD1772 will take care of shifting the input stream by a half cell to correctly read the sector
16 data.

The end result is that you can read the “data” bytes of the NFA by reading sector 0, and you
can read the “clock” bytes of the NFA by reading sector 16 (sector within sector).

As you can see
around 90 ms
inside the track we
have a region
without any
transition for a
period of 4330µs.

If we zoom close to
the NFA we see
that we have a first
sector, and inside
this sector we have
a second sector
(sws) and that the
data segments of
these sectors both
includes the NFA.

 Note: Inter-GAP in Green, ID in yellow, Intra-Gap in light green, Data in blue.

4.9.2 Special case of No Flux Area over index

It is possible to have the No Flux Area located over the Index pulse. This is a hard to handle
case for programs that reads the flux transitions produced by devices like Kryoflux and
SuperCard Pro.

It is interesting to note that, for obvious reasons, in (almost) all cases the index pulse and the
data pulse are not synchronized. In order to correctly interpret the information sampled, it is
therefore necessary to know the position of the index pulses relative to the data pulse.

In “normal” cases (i.e. for data pulse in range 4 to 8 µs) it is acceptable to ignore the position
of the index relative to the current flux transition, but in case where a no flux area is located
over the index it is mandatory to get and interpret correctly this information.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 39 / 77

Here is a typical case of an NFA over index. As we can see we have a huge area without flux
transition located just above the index. In the figure we show three important values: one is
the “NFA flux value” (typically around 4 to 5 ms.), the pre-Index time value, and the post-
Index time value (only 2 of these three values are required as the third can be easily
computed from the other two).

Data Signal

preIndex

 NFA fluxValue

preIndex

Index Signal

 NFA fluxValue

RevolutionTime

postIndex postIndex

For a practical example I use the Turrican game. On my version track 8 has a NFA of about
4.3 ms located on top of the index. The pre-index value is about 3 ms and therefore the post-
index is about 1.3 ms.

Here is the correct display of this track by Aufit.

The Kryoflux raw stream format provides the NFA value as well as the pre-index timing (see
my documentation KryoFlux Stream File Documentation). The only way to be able to provide
this kind information is to start to sample flux before the index as the Kryoflux device does.

Unfortunately the SCP format does not provide any information about the positioning of the
index pulse relative to data pulse. I have requested this feature several times on Atari-Forum
as well as on the SCP forum without success. In SCP device:
 The sampling of transitions always starts at the index pulse. It is therefore not be possible

to detect the index position for the transition happening before the index.
 The results is the No Flux Area is just not transmitted on the first rotation. On the second

revolution the NFA is passed as if it was the first transition.

http://info-coach.fr/atari/documents/_mydoc/kryoflux_stream_protocol.pdf

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 40 / 77

 Normally it is expected that the sum of the length of all the transitions in one revolution is
equal to the revolution time given as the time between two indexes. But this does not
work in SCP format because the sum does not include the post-index part of the NFA
and therefore the value in that case is much smaller than the expected value. This is to
compare to the exact value transmitted by raw stream as explained page 14 of KryoFlux
Stream File Documentation.

Because of all the reasons explained above it is impossible to get correct information from
the SCP file in this case. However Aufit take advantage of the last reported problem to
compute the post-value that is added in front of the transitions. But as mentioned the first
revolution is nevertheless not displayed correctly as the NFA is not transmitted in this
revolution. In the subsequent revolutions the display is not correct either because the
complete NFA is transmitted incorrectly as the first transition of the revolution.

As you can see both the start and the end of the NFA are incorrectly displayed. If you select
revolution 2 the complete NFA is now placed entirely as the first transition.

Fortunately for the user it seems that in all the games, using NFA, that I have tested the
relative position of the NFA (in respect to the index pulse) is not relevant. Therefore even
though the information displayed and saved in the image file is incorrect writing the
protection in Pasti file seems to work in all cases.

http://info-coach.fr/atari/documents/_mydoc/kryoflux_stream_protocol.pdf
http://info-coach.fr/atari/documents/_mydoc/kryoflux_stream_protocol.pdf

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 41 / 77

4.10 Unformatted Diskette / Track / Sector

4.10.1 Presentation

By definition an unformatted diskette would be a diskette that has never been formatted.
During formatting, the particles are aligned forming a pattern of magnetized tracks, each
broken up into sectors, enabling the controller to properly read and write data. Here is a
definition from Wikipedia: “A blank "unformatted" diskette has a coating of magnetic oxide
with no magnetic order to the particles”.

The magnetization on the surface should be relatively uniform and in an ideal world the head
should not peak up any flux reversal and therefore the read circuitry should not return any
data pulse. But in practice many pseudo random transitions are detected. Two things explain
this behavior:

 As we have no regular flux transitions, the drive's automatic gain control (ACG) is
pushed to its maximum possible gain because it presumes a weak signal coming from
the drive's read head.

 Some random flux variations exist naturally on the magnetic surface and due to the fact
that the ACG is turned to its maximum they may be detected as flux transitions. This
can be compared to “hearing” noise from a blank audio tape when the volume pushed
very high.

The detected data seems "random" in the sense that the data is never the same twice. But it
seems that the “repartition” of these transitions is related to the drive speed (and humidity,
temperature) fluctuations. Note that compared to a normal track the number of flux
transitions detected on an unformatted track is obviously much lower.

We can see that most of the transitions are typically located between 2µs and 7µs. The
image below show a typical histogram for an unformatted track:

If we limit the scale of the displayed transitions to 10µs we have the following image:

http://en.wikipedia.org/wiki/Floppy_disk

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 42 / 77

Few things I have noticed:

 Usually all the unformatted tracks of one diskette looks very similar (i.e. they have
equivalent histograms) but they look different from one diskette to another. This
“signature” is probably dependent of the diskette as well as of the drive used.

 When you record the flux transitions of a track over several revolutions, usually you do
not see much difference between one revolution and the next except for unformatted
track. Due to the random nature of unformatted track the data information recorded
differ widely from one revolution to the next even though the histogram stay relatively
the same.

4.10.2 Partially unformatted track

Some protections use partially unformatted tracks. For example:

The example above shows the track 79.0 of Night Shift game. We can see that we have two
unformatted sections in this track. The clock, decoded by the DPLL, in these regions vary a
lot and you can easily imagine that the data read from these sections contains fuzzy bits.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 43 / 77

Another example taken from a protected diskette from DrT a D50 Patch Editor. In the
following chart I have zoomed on an unformatted area near the end of track 00.0:

We see that the end of the track is unformatted and have therefore random transitions, but
just before that area we also see a strange “fish bone” pattern. We have some flux transitions
placed closed to 5µs and 3µs which are exactly at the border of the inspection window and
this will certainly results in fuzzy bits. Note that with this fish bone pattern the transitions
close to 5µs are “compensated” by transitions close to the 3µs and this results (thanks to the
DPLL) in a relatively stable 2µs clock.

All the previous examples where taken from Double Density Floppy disks (the one used on
Atari). But I have also experimented with High Density floppy disks (PC diskettes).

I have noticed that the unformatted tracks from a HD floppy look different! They seems to
exhibit a much more pronounced “banding effect”:

This is probably due to usage of different magnetic coating that have different coercivity.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 44 / 77

4.10.3 Partially formatted Track

Another trick used for protection is partially formatted track: At first glance the track seems to
be unformatted but in fact it contains some information (sometimes this information is used
by duplicators and/or by manufacturer). Some protections may use as little as just a few
bytes of data and leave the rest of the track unformatted. Most copier won’t be smart enough
to detect this kind of hidden information.

However in order to use this trick for protection you not only need to write the hidden bytes
but you also need to be able to read and check them correctly with the FDC of the platform.
In the case of a MFM DD diskettes used with Atari ST, the only reliable way to decode and
check hidden bytes in an unformatted track is to have one or several SYNC marks in front of
the data. Even with sync mark it is difficult to detect this kind of information using a read track
command unless you know exactly what you are looking for.

4.10.4 Unformatted track detection

It is usually easy to visually detect that a track is unformatted on a scatter chart but it is more
difficult to detect this by software. The detection should provide reliable information and
ideally detect partially unformatted track as well as partially formatted track. There are
several possible proposed indicators:

 If you cut a track in small chunk of data you should be able to match each of these
blocks from one revolution to the next. Of course you need to allow for some slack in
position from revolution to revolution.

 You can check for legitimate encoding on the track. For example in the case of MFM
encoding this could be as simple as detecting SYNC marks sequence.

 I have successfully used a modified computation of the Shannon Entropy on the flux
transition’s histogram. A “normal track” has a coherent repartition and this result in a
high entropy.

 The number of transition is lower than normal track.
 Unformatted track contains invalid MFM sequence. For example 0x0000

By combining the above indicators you should be able to detect “true” unformatted track (i.e.
with zero encoded bytes).

4.10.5 How to reproduce unformatted areas on Floppy Disks?

The simplest idea that comes to mind is that we use a blank diskette and for unformatted
areas we do not write anything. Unfortunately DD floppy diskettes you buy in the commerce
are already preformatted (usually using the IBM format
and with a DOS 2.0 boot sector). I don’t know why the
manufacturers do that, but I guess this must be for
them to run some quality tests?

Note that only tracks 0 to 79 are preformatted on blank
diskettes. If we sample the flux transitions of
unformatted tracks beyond this limit (track 80-83) we
can see that these tracks are similar but slightly
different than unformatted tracks in range 0-79.

This seems to indicate that professional duplication machines might have used unformatted
diskettes?

Writing unformatted track it is as simple as enabling the write gate and keeping the write data
line of the drive to zero for the time of the track. This will keep the current flowing in the
read/write head constant and therefore the flux will written will be constant.

The only potential problem comes from potential misalignment of the write head relative to
previously written data. Hopefully the tunnel or straddle erase head should take care of the
leftover of previous contents.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 45 / 77

Remember that writing data on a floppy drive is different from the same operation on an
audio tape drive. On an audio tape the information the data is first erase by an erase head
then the new data is written linearly by the read/write head. On a floppy drive there is no
erase head (other than the tunnel / straddle erase head used from trimming track) and the
new data are just written over the existing one with the head operating at magnetic
saturation.

To summarize: un-formatting a track only requires to keep the write data line negated during
the complete write operation. This is obviously not possible with a WD1772 FDC (it always
pulse the write data line) but it is easy to control on a replicator (e.g. trace) or with a Kryoflux,
SuperCard Pro device.

On an Atari the best you can do is to format a track using a buffer containing random bytes,
but you will never get something similar to a real unformatted track because flux will always
be located in the 4, 6, and 8 µs bands.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 46 / 77

4.11 Fuzzy Bits
Fuzzy bits are known under many different names: weak bits, wandering bits, flaky bits,
flakey bits, phantom bits, etc. Weak bits is the most commonly used term, however I find it
confusing (as there is usually no “weakness” in weak bits). Therefore I prefer to use the term
Fuzzy bits that does not indorse any underlying cause but clearly indicate the “fuzziness”
nature of the returned data. Although fuzzy bits can be created by using different techniques
the result is always the same: reading a byte that contains fuzzy bits will return random
values (i.e. different values each time it is read). Fuzzy bytes could potentially be located at
any place in a track but fuzzy bytes are often placed in the data field of a sector. To provide
complete information we will describe below several ways to create fuzzy bytes: Flux
reversals in Ambiguous Area, MFM Timing Violation, or Weak Bit. However for emulation or
backup purpose it is not necessary to know underlying mechanism used.

4.11.1 Flux Reversals in Ambiguous Area
 Description: These fuzzy bits are obtained by “placing” certain flux reversals in so called

“Ambiguous areas” i.e. at the border of the inspection window. Please refer to WD1772
Detection of Border Bits section for more information.

 Creation: These fuzzy bits are obtained by placing the bit flux reversals in “Ambiguous
areas”. More precisely the bit reversals are placed in locations that will confuse the DPLL
(Digital Phase Lock Loop) of the data separator resulting in random values read (i.e.
sometimes 0, sometimes 1). This is obtained by positioning the bit reversals at the
border of the inspection window. In that case the data separator will return random
values due to small variation of the drive rotation speed. In the US patent “Copy
Protection for computer Disc 4,849,836” one of the techniques to create fuzzy bits
consists in having flux reversals gradually sliding in and out of the inspection window
border. Of course creating this kind of reversals requires special hardware that has
capability to vary the FDC clock on the fly, or the capability to directly control the bit cell
width/position (e.g. the Discovery Cartridge, KryoFlux board, SuperCard Pro device).

 Detection: As mentioned this protection results in Fuzzy Sector. Therefore it can be
detected by reading the same fuzzy sector (i.e. sector that contains fuzzy bits) several
times and checking that returned data are random. Without specific hardware it is not
possible to find the real underlying cause of the fuzzy bits but this information is of no use
for an emulator or a duplicator.

 Duplication: Difficult and requires special hardware (i.e. the Atari WD1772 cannot be
used to copy this kind of bytes). Analog or digital copiers can be used but, as usual,
digital copier should be preferred.

 Emulation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector but should not care of the underlying cause of the fuzzy bits.

 Example: Dungeon master Track 0, sector 7

4.11.2 MFM Flux Timing Violation
 Description: These fuzzy bits are obtained by using flux reversals that violate the timing

of the MFM rules.
 Creation: These fuzzy bits are obtained by placing flux reversals that contains MFM

timing violations (data separated by less than 4 µs or more than 8 µs). For example a
long series of zero data with missing clock bits. These bit-cell width are beyond the
normal DPLL capture range and the next received reversal will be interpreted differently
based on small random variation of the DPLL clock and/or the drive rotation speed. Of
course this technique requires special hardware that has capability to vary the FDC clock
on the fly, or the capability to directly control the bit cell width/position (e.g. the Discovery
Cartridge). Note that this violations are often achieved by using an unformatted a section
of the track. See Unformatted Diskette / Track / Sector section for more information.

 Detection: As mentioned this protection results in Fuzzy Sector. Therefore it can be
detected by reading the same fuzzy sector (i.e. sector that contains fuzzy bits) several

http://en.wikipedia.org/wiki/Fuzzy_logic

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 47 / 77

times and checking that returned data are random. Without specific hardware it is not
possible to find the real underlying cause of the fuzzy bits but this information is of no use
for an emulator or a duplicator.

 Duplication: Difficult and requires special hardware (i.e. the Atari WD1772 cannot be
used to copy this kind of bytes). Analog or digital copiers can be used but, as usual,
digital copier should be preferred.

 Emulation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector but should not care of the underlying cause of the fuzzy bits.

 Example: D50 Editor - Track 0 - Sector 10.

4.11.3 Weak Bit
 Description: We use the term weak bits for data bits that produce weak flux reversals

below a certain threshold that will therefore result in ambiguous reading returning
different values on different reads (see fuzzy bits for a generic description). The
SpinRight documentation (from SpinRite's Defect Detection Magnetodynamics site)
gives a good explanation on weak recorded reversals.
Weak bits can be created by many different means
but the most popular have being described in the
US Patent 4,849,836.
One method consists to move the head slightly out
of alignment during write operation (see figure 3).
As the Atari FD drives do not have a sophisticated
track follower mechanism, this result in weak
reversals during read (see figure 4).
Another method consists in writing a “protection
track” in between normal tracks (see figure 5). It is
obvious that this extra track will induce
perturbations in the data bit flux of the adjacent
tracks resulting in weak bits when there is
opposition in the fluxes.
Yet another method consists in placing bits on top
of physical defects on floppy surface. To be useful
these defects have to be created precisely on
specific spots of the surface layer using for
example evaporation with an infrared laser.

 Creation: Creation of this type of weak bits requires very specialized hardware. Here we
are not talking about special floppy disk controllers but about special floppy drives.

 Detection: As mentioned this protection results in Fuzzy Sector. Therefore it can be
detected by reading the same fuzzy sector (i.e. sector that contains fuzzy bits) several
times and checking that returned data are random. Without specific hardware it is not
possible to find the real underlying cause of the fuzzy bits but this information is of no use
for an emulator or a duplicator.

 Duplication: It is obviously at least extremely difficult if not impossible to exactly
reproduce the weak bits described in this section. However it is possible to mimic their
behavior by placing Flux Reversals in Ambiguous area as this result in the same behavior
and therefore should be transparent to the detection mechanism of the protected
program.

 Emulation: The preservation file should have an indicator to record the fact that the
sector is a fuzzy sector but should not care of the underlying cause of the fuzzy bits.

 Examples: I am not aware that this technique has been used on Atari.

http://www.grc.com/files/technote.pdf
http://www.grc.com/srphysics.htm

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 48 / 77

4.12 Write Splices

4.12.1 Sector write splices

In general it is not possible with the WD1772 FDC to write an entire track in one operation.
This is due to the fact that when writing a track the data in the range 0xF5 to 0xF7 are
treated as special control bytes and therefore they cannot be written directly during a write
track (format) operation. Therefore on an Atari machine, to use a floppy disk, the first
operation consists in formatting the track using a write track command then the data field of
each sector is written using write sector commands.

Here is a simplified description of the write sector command:

Upon receipt of the Write Sector Command the FDC searches on the track an ID field that
has the correct track number, correct sector number, and correct CRC. If such an ID field is
found the WD1772 counts 22 bytes from the CRC of the ID field and it activates the WG
output. Then the following data are written on the disk:

 12 bytes of zeroes
 Three A1 Sync
 A Data Address Mark
 The complete data field
 A two-byte CRC is computed internally and written on the disk
 One byte of logic ones.

Then the WG output is deactivated.

22 x 4E 40 x 4E12 x 00 3 x A1
DAM FB or
DDAM F8 User Data 512 Bytes CRC1 CRC 212 x 00 3 x A1IDAM FE Track # Side # Sect # Size CRC1 CRC 2

Write Gate

ID Segment

ID Field ID postamble Data preamble Data Field Data postambleID preamble

Data Segment

It is easy to understand that the activation and deactivation of the Write Gate cannot be
aligned precisely with the original data written during the format operation and furthermore,
as the speed of the drive fluctuates, the overall size of the data segment will most likely not
be the same. This results in writing non-aligned (drifted) transitions, which most likely violates
MFM rules, when the WG is activated and deactivated. These two areas are called sector
write splices.

When data are written on a floppy disk with professional duplication equipment the complete
track is written in one operation and therefore these sector write splice areas do not exists.
This is one way to verify that we are working on a “master floppy disk” written on professional
duplication equipment and that the sector data on the FD has not been tempered.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 49 / 77

4.12.2 Track write splices

As said before when using professional duplication equipment it is possible to write a
complete track in one operation and this will result in a track without any sector write splices.
The writing of the complete track starts at a specific point of the rotation of the disk and ends
up at a specific point (typically the same point). For non-protected tracks these starting and
ending points (WG activation / deactivation) are aligned with the track index.

But even with professional equipment it is no possible to deactivate the write gate at
precisely the same position that when it was activated. This results in writing a non-aligned
(drifted) last transition, which most likely violates MFM rules, when the WG is deactivated.
This area is called the track write splice.

In the case of a standard track the writing starts in the post-index gap G1 and stops in the
pre-index gap G5 and therefore the track splice happen in this non-critical area.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Write Gate

However some protections are based on shifting the position of the complete track in respect
with the index. For example the index might be positioned in the middle of the last data field
(data over the index protection).

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4G5 G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4

Sector n

DATA G4 G5 G1

Write Gate

In such a case it is not possible to activate and deactivate the Write Gate at the position
aligned with the index because this would result in a track write splice located in the middle
of a data field and this would therefore result in corrupted data.

For this kind of protection it is therefore important for the mastering equipment to activate
and deactivate the write gate in a position which is still located close to the border of the pre-
index and post-index gaps. However in that case the location of the track write splice can be
located anywhere with respect to the index.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 50 / 77

4.13 Hidden data
It is possible to hide data in many different places on a track (read Copy me, I want to travel
by Claus Brod on the subject). The data can be hidden in GAPs of a track that looks normal,
or they can be hidden in tracks that seems to have no data, etc.

Here we present some cases of hidden data including data hidden after spurious sync
sequence. Usually sync marks are used in sequence of three in front of an address mark
(IAM or IDAM). But several games like Dragonflight, Jupiter Masterdrive, or Union demo
uses special sequence of false sync marks as a protection.

4.13.1 Union Demo / Dragon Flight hidden sequence

One special sequence (used in Union Demo or in Dragon flight) is read as C2 0B CD B4 F7
… or 14 0B CD B4 F7 by the read track command of the WD1772. If you analyze this
sequence at the bit stream level (using for example Kryoflux or SuperCard Pro device) you
will find out that the $C2 or $14 bytes are in fact $5524 sync marks, and that the following
$0B byte is a $4489 sync mark. It is relatively hard to detect this sequence because you do
not always read a sync mark value. This special sequence cab be placed on track 41 to
render the detection even harder (see False sync mark detection).

What is interesting is that in fact this sequence can be written on an Atari with a regular
WD1772. This sound impossible as normally the byte $F7 forces the FDC to write two CRC
bytes during a write track (format) command. But as we have seen any byte can be escaped
by placing a $F7 escape byte in front of it. Therefore if we use the following sequence of
bytes during a write track:

00 29 F5 F7 F7

The $F5 byte resets the CRC register to $CDB4, the first $F7 forces the FDC to write the
content of the CRC register ($CDB4), and the second $F7 is escaped (because following a
previous $F7). Therefore the sequence is written as

00 29 A1 CD B4 F7

During the read track command a first sync mark is decoded as $C2 or $14 (depending if the
sync mark decoder has started on a clock or data bit) and the second $4489 sync byte is
decoded as $0B followed by $CDB4F7:

C2 0B CD B4 F7

Note that Aufit is capable to detect this hidden sequence reported as the dragonflight
protection.

4.13.2 Jupiter Masterdrive hidden sequence

One special sequence (used in Jupiter Master Drive) is read by the read track command
(tracks 02-04) of the WD1772 as:

C2 00 1C 92 10 90 C2 0B CD B4 F7 00 DE AD C0 DE

If you analyze this sequence at the bit stream level (using for example Kryoflux or SuperCard
Pro device) you will find out that the first and second $C2 are in fact $5524 sync marks, and
that the following $0B byte is a $4489 sync mark. It is relatively hard to detect this sequence
if you are not looking for it. As you can see DE AD C0 DE can be read as dead code.

What is interesting is that in fact this sequence can be written on an Atari with a regular
WD1772. The following sequence can be used during a write track command

28 29 55 42 49 4E 4E 29 F5 F7 F7 00 DE AD C0 DE 00 00

First note than in this input sequence we find in hexadecimal the ASCII char UBI (55-42-49)
that are obviously related to UBISOFT the maker of the game.

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 51 / 77

The $F5 byte resets the CRC register to $CDB4, the first $F7 forces the FDC to write the
content of the CRC register ($CDB4), and the second $F7 is escaped (because following a
previous $F7). Therefore the sequence is written as

28 29 55 42 49 4E 4E 29 A1 CD B4 F7 00 DE AD C0 DE 00 00

See False sync mark detection to understand the following. During the read track command
the $28 $29 byte are decoded as a $C2 sync mark and the following bytes are shifted and
therefore read as 00 1C 92 10 90. The $29 $A1 bytes are decoded as $C2 $0B bytes and
the stream is resynchronized correctly on the second A1 so that the remaining bytes are
interpreted normally as CD B4 F7 00 DE AD C0 DE 00 00.

4.13.3 Realm of the Troll

Track 79.0 seems to contain no data: it has no sector and even no sequences of 3 x $4489
sync marks. However using a read track command we can see that we have a sequence of
one $4489 sync mark, followed by one $5224 sync mark, followed by the two bytes $45 $EF,
followed by a sequence of bytes from $F8 to $FF, followed by a sequence from $00-$F4.
These different sequences repeats 23 times.

As we have 00, …, 28, 29, 30, … in the sequence we get a False sync mark detection as
already explained: the sequence 28, 29 is interpreted as a $5224 sync mark and all the
following bytes are shifted and therefore read incorrectly (we are in fact reading clock bytes).

00224 2000 007189 01 00 00 00 0F 0E 0C 0C 09 08 08 08 03 02 00 00

00240 1969 007699 01 00 00 00 07 06 04 04 01 0B C2 45 EF F8 F9 FA ÂEïøùú

00256 1984 008211 FB FC FD FE FF 00 01 02 03 04 05 06 07 08 09 0A ûüýþÿ...........

00272 2000 008722 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A

00288 2000 009233 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 14 40 !"#$%&'(.@

00304 2000 009744 C0 41 C0 40 C0 47 C6 44 C4 41 C0 40 C0 43 C2 40 ÀAÀ@ÀGÆDÄAÀ@ÀCÂ@

00320 2000 010255 C0 41 C0 40 C0 1F 9E 1C 9C 19 98 18 98 13 92 10 ÀAÀ@À...........

00336 1984 010766 90 11 90 10 90 07 86 04 84 01 80 00 80 03 82 00

00352 2000 011277 80 01 80 00 80 0F 8E 0C 8C 09 88 08 88 03 82 00

00368 1984 011787 80 01 80 00 80 07 86 04 84 01 80 00 80 03 82 00

00384 2000 012297 80 01 80 00 80 3F 3E 3C 3C 39 38 38 38 33 32 30 ?><<9888320

00400 1984 012806 30 31 30 30 30 27 26 24 24 21 20 20 20 23 22 20 01000'&$$! #"

00416 1974 013316 20 21 20 20 20 0F 0E 0C 0C 09 08 08 08 03 02 00 !

00432 2000 013826 00 01 00 00 00 07 06 04 04 01 00 00 00 03 02 00

00448 1984 014335 00 01 00 00 00 1F 1E 1C 1C 19 18 18 18 13 12 10

00464 1969 014844 10 11 10 10 10 07 06 04 04 01 00 00 00 03 02 00

00480 1984 015353 00 01 00 00 00 0F 0E 0C 0C 09 08 08 08 03 02 00

00496 1974 015861 00 01 00 00 00 07 06 04 04 01 0B C2 45 EF F8 F9 ÂEïøù

00512 1984 016364 FA FB FC FD FE FF 00 01 02 03 04 05 06 07 08 09 úûüýþÿ..........

Note that bytes $F5 to $F7 are carefully avoided and therefore it should be possible to write
this kind of track on directly on an Atari.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 52 / 77

Chapter 5. Analysis of Games/Programs
This section provides detailed analysis of some programs/games protections. The purpose is
to illustrate the usage of some of the protections described in this document.

However it must be noted that:
 The presence of a described protection mechanism does not imply that it is actually used.
 It is possible that more protections than the one described exist for analyzed games.
 Beware that diverse releases of the same game may exist that uses different protections.
 Only Original diskettes have been used (unless specifically noted). However it is difficult

to know for sure that none of these diskettes have not been modified.
 The original diskettes were created in 80’s 90’s and therefore may be damaged.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 53 / 77

5.1 Barbarian (from Psygnosis)
It seems like there are several versions of this game that uses different protections. The
version I have uses the following protections:
 Non Standard Number of sector: Track 0 only one sector
 Track Not Found: Track 74-79

If we look at track 0 of Barbarian we first see that the layout is rather unusual as the track
has only one sector of 512 bytes! The sectors on other tracks are numbered from 10 to 18.

The track 78 seems unformatted (no sync mark, no sector) but however is MFM formatted.

The program performs up to 10 times
read track commands on track 78 and
tests for value 0xFF or 0x00 at location 28
(0x1C).

On one version of Barbarian this is
obtained with a special track that uses a
continuous sequence of 4 µs flux
transitions. This results in a MFM string
like this ...1010101010101010...
Depending on which bit the sampling
starts this result in values 0x00 or 0xFF.
The switch from 0x00 to 0xFF that can be
seen at the start of the track is due to the
presence of few glitches at the beginning
of the track. It is unclear if this is done on
purpose.

On another version of Barbarian that also
tests for 0x00 or 0xFF on track 78 but
use a more difficult to produce stream of
flux transitions. In this version the track
uses a sequence of 8µs fluxes. This
results in a MFM string like this
...100010001000100010001000...
Depending on which bit the sampling starts this result in MFM values: 1111 2222 4444 8888
that decodes into 0x55 0x00 0xAA 0x00 respectively.

For this protection the program tests the presence of 0x00 or 0xFF, therefore Pasti imager
and Aufit always decode this kind of sequence as 0x00 in order for the protection to succeed.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 54 / 77

5.2 Bob Morane
Track 50.0: All the “normal 0x4E” gap byte
are replaced by the “invalid 0xF7” byte.

5.3 Colorado
 Track 01.0 I find the following protections:
 Sector Bit-rate Variation (SBV)
 Sector with Fuzzy Bits (FZS) and Data CRC Error (DCE)
 Invalid ID Field (IIF) without Data Field (SND)

Here is a plot of the complete track:

If we zoom in the first sector we can see some intra-sector clock rate variation. If we look at
the intra-sector bit-rate variations we recognize a Macrodos protection from Speedlock.

Here we can see that the
data field is roughly dived
into four segments. In the
first segment we have
normal timing, in the second
segment we have above
normal clock values, in the
third segment we have below
normal clock values, followed
by the last segment with
normal values. This corresponds well to the definition of SBV where we have the sector
divided into 4 regions with timing: normal, above, below, and normal. Note that each
segment is about 128 bytes and that the above and below clock rate compensate. This
means that the overall length of this sector is 16487.46 µs which is very close to a normal
16480 µs sector.

Probably due to the quick shifting of the clock we have some border bits and therefore the
sector also reads with fuzzy bytes and CRC error.

Now if we read the complete track and look at the end of the buffer we have some strange
values:

Here we can see an abnormally
long sync sequence followed by
an IDAM with the following errors:
Nonstandard IDAM (IIF-NSI),
Invalid track number (IIF-ITN),
Invalid sector length (IIF-ISL) and
Invalid ID CRC (IIF-IIC)

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 55 / 77

5.4 Computer Hits Volume 2 (Beau-Jolly)
This release is a set of two diskettes that contains a compilation of the following games: Disk
1: Tau Ceti, Tetris – Disk 2: Joe Blade, and Tracker.

Computer Hits Volume 2 uses the following protection mechanisms:
 Short track 79 of Disk 1 and 2
 Nonstandard Sector’s Number: 11 Sectors/Track
 Data Beyond Index pulse on tracks 0-78 of diskette 2

Track 79.0 – Short track

The bit cell width of bytes
written in all the sectors of
track 79 (disks 1 and 2) is
4.2 µs (5% above normal).
After the last byte of the
last sector the cell width is
returned to the standard
4µs value. This results in a
short track with less than
6000 bytes instead of a
normal 6250 bytes track.

Track 0-78 – 11 Sector tracks

Using 11 sectors per track
is not really a protection,
however it pushes the
WD1772 at its limit. See
Format for 9/10/11 Sectors
of 512 Bytes

For example let’s look at
the layout of track 0 of the
first diskette.

-----------+------------------+-----------+---------------------------+------------

GAP2 |ID |GAP3 |DATA |GAP4

Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS

-----------+------------------+-----------+---------------------------+------------

37 1187 |NO ID |0 0 0|515 16442 OK 0 0 3.99|4 127 0

11 351 |5 18109 223 OK |31 987 0|515 16447 OK 0 0 3.99|4 127 0

11 350 |9 36246 223 OK |31 987 0|515 16440 OK 0 0 3.99|4 127 0

11 349 |2 54373 202 BAD|32 1002 0|515 16384 BAD 0 0 3.98|5 153 0

11 350 |6 72467 223 OK |31 983 0|515 16406 OK 0 0 3.98|4 127 0

11 351 |10 90559 223 OK |31 989 0|515 16405 OK 0 0 3.98|4 127 0

11 349 |3 108655 222 OK |31 984 0|515 16402 OK 0 0 3.98|4 127 0

11 351 |7 126743 223 OK |31 986 0|515 16428 BAD 0 0 3.99|5 153 0

11 352 |11 144887 224 OK |31 989 0|515 16395 OK 0 0 3.98|4 127 0

11 349 |4 162974 222 OK |31 985 0|515 16437 OK 0 0 3.99|4 127 0

11 350 |8 181097 222 OK |31 984 0|515 16447 OK 0 0 3.99|18 572 0

20 632 |0 199958 19 BAD|0 0 0|NO DATA |0 0 0

-----------+------------------+-----------+---------------------------+------------

What we see is that the layout of this track uses strange values for the number of bytes in
GAPS. The GAP3 is set to 31 bytes and GAP4 is only 4 byte. Normally Gap3 must be 37
bytes (22x$4E+12x$00+3x$A1) and is not compressible. This corresponds to the time it
takes for the WD1772 to switch from reading an ID Field to a Data Field. Here we have the
following GAP3

+ GAP3 31 bytes @18333 us length=987.49 us - TMV=0 BRD=0 BS=0 IDG=0

 023e 18333 4000 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN

 024e 18844 4000 4e 4e 4e 4e 4e 4e 00 00 00 00 00 00 a1 a1 a1 NNNNNN.........

This format results in a “read only” track because we have the normal 22x$4E bytes
(GAP3a) but we only have 6x$00 bytes. If a write is done on such sector the write gate is

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 56 / 77

raised at the end of the ID postamble (GAP3a) then the WD1772 write 12x$00 3 sync bytes
and a normal data field. This results in the sector to be shifted by 6 bytes but the data
postamble (GAP4) is only 4 bytes and therefore we are already in the next sector!

Track 0-78 (disk 2) – Data beyond Index

The last (first?) sector of each track is pushed very close
to the end of the track. If you look at the diagram you will
see that in fact the sync mark and the first byte of the ID
field are located before the index and the rest beyond the
index including of course the data field. It is absolutely
impossible to do this on an Atari and this requires very
precise mastering machine. As the ID field is located
“above” the index it is not possible to start/stop the writing
aligned with the index (this would result in write splice
inside the ID field).

If you look carefully at the transitions between 199 and
199.5 it seems that we have the track write splice at this
location. This means that the mastering machine would
start / stop writing about half millisecond before the index.

If we look at the end of this track buffer we find something like:

+ GAP2 20 bytes @199325 us length=632.73 us - TMV=0 BRD=0

 186d 199325 4000 ff ff ff ff fe 01 39 39 39 38 00 00 00 00 00 00 9998......

 187d 199840 4000 02 a1 a1 a1

= ID=0 1 bytes @199958 length=19.95 T=0 H=0 S=0 Z=512 CRC=0000 *** BAD *** TMV=0 BRD=0 BS=0

 1881 199958 4031 fe

As you can see here we only have a sync sequence followed by an IDAM but not the rest of
the ID field (remember the read track command terminates at the index). This start of the ID
field (the IDAM) is therefore at the very end (only few micro seconds) of the track and
therefore the rest of ID field must be at beginning of track.

Therefore if you do a read track command on a real Atari you have all the chance not to see
this ID field. For example here is the content of the end of the track buffer as read by the
Panzer program on a real Atari:

 1830 3973 ff 80 00 00 00 3f ff ff ff 80 00 00 00 3f ff ff ?.......?..

 1840 3973 ff 80 00 00 00 3f ff ff ff 80 00 00 00 3f ff ff ?.......?..

 1850 4037 ff 80 00 00 00 3f ff ff ff e0 10 c8 48 48 48 48 ?......HHHH

 1860 3973 48 48 48 48 48 48 48 48 00 00 00 00 00 00 00 00 HHHHHHHH........

 1870 4069 00 00 10 90 90 90 90 ff ff ff ff ff ff ff c2 a1

Here you can see that we have the start of the sync sequence but not the IDAM. This is due
to the Atari DMA circuit: the DMA always delivers multiples of 16 bytes due to the buffering
mechanism and therefore up to 15 bytes may be “stuck” in the DMA buffer at the end of the
read-track command.

However the WD1772 will detect this ID field without problem with a read-address command
and will find the corresponding DATA field with the read-sector command.

Therefore it looks almost impossible to position this ID Field with this precision by software
and mastering machines are required.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 57 / 77

5.5 D50 Editor V2 (Dr.T)
The D50 Sound Module Editor
program from DrT uses the
following protection mechanisms:
 Track 00.0-79.0 sector 10 has

fuzzy bits in the Data Field.

We can see that sector 10 is
partially unformatted but it has also
a lot of border bits. Here is a zoom
on sector 10:

If we further zoom we can see that after the position 180000 we have a lot of border bits in
the range from 3 to 5µs with a strange pattern that “compensate in pair”. This results in an
average 2000 µs cell but for sure all these border bits should generate fuzzy bits.

After the position 185000 we can see that we have random flux reversals. This pattern is
typical of an unformatted track. Therefore we can conclude that the formatting of the track is
stopped after about one third of the last sector. This is obviously not feasible with the
WD1772 FDC and therefore to copy this track it is necessary to have special mastering
device like Discovery Cartridge or KryoFlux board or Supercard Pro.

Note that random flux reversals result into unpredictable clock frequency (and also
unpredictable inspection windows position) of the DPLL. This and the presence of border bits
results in fuzzy bytes in the sector.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 58 / 77

5.6 Dragon flight
 Track 00.0 and 00.1 have 10 sectors of 512 bytes and all other tracks have 5 sectors of

1024 bytes plus one sector of 512 bytes.

 Most (if not all) tracks have hidden data into gap (HDG). The tracks starts with sync

sequence $5224 and $4489 sync marks followed by $CD-B4-F7. This sequence is read
as
14-0B-CD-B4-F7 or C2--0B-CD-B4-F7

 Track 00.0 and 00.1 have a sequence of 8 invalid character $F7 in the gap following the
hidden data describe above (IDG).

 Track 00.0 and 00.1 uses an invalid head value (48 or $30 in hex) in the ID fields of all
sectors (IIF-IHN)

 All other tracks uses an invalid head value (48 or $30 in hex) in ID fields of all sectors
(IIF-IHN) as well as an invalid track number value (178 or $B2 in hex) in ID fields of all
sectors (IIF-ITN)

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 59 / 77

5.7 Dungeon Master (FTL Inc.)
For detail analysis of the Dungeon Master & Lost Scroll protection please refer to the DM
Protection document, the detailed analysis of the Dungeon Master and Chaos Strikes Back
for Atari ST Floppy Disks and the US patent “Copy Protection for computer Disc 4,849,836”)

The game “Dungeon Master” uses the following protection mechanisms:
 Invalid Sector Number: Track 0 the sector 8 is numbered 247.
 Fuzzy bits & Sector with bad Data: Track 0 sector 7 the Data Field has bits in

Ambiguous areas resulting in a fuzzy sector with CRC error.

Here is the Layout of track 0

As you can see in sector 7 we have a lot of border bits (BRD) aka bits in Ambiguous area.
Looking at the content of this sector we can see that the clock period range from 3938 ns to
4031 ns with an overall clock period of 4.01 µs

Detail buffer content for sector 7 with 515 bytes

= DATA ID=7 515 bytes @121545 us length=16506.79 CRC BAD CLK=4.01 TMV=0 BRD=495 DOI=0

 *** Fuzzy Sector *** starting at byte position 34

 0000 121545 3968 fb 07 50 41 43 45 2f 46 42 09 53 65 72 69 ca 08 ..PACE/FB.Seri..

 0010 122055 3968 00 00 ef e9 01 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhh

 0020 122565 3938 68 68 68 e8 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 hhh......hhhhhhh

 0030 123073 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 0040 123583 4031 68 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 h.....hhhhhhhhhh

 0050 124092 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 hhhhhhhhhhhhhh..

 0060 124604 4000 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhh

 0070 125114 4000 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 e8 e8 hhhhhhhhhhhh....

 0080 125628 3968 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 68 ...hhhhhhhhhhhhh

 0090 126141 4000 68 68 68 68 68 68 68 68 68 68 e8 68 e8 e8 e8 68 hhhhhhhhhh.h...h

 00a0 126654 4031 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 68 68 ..hhhhhhhhhhhhhh

 00b0 127168 4031 68 68 68 68 68 68 68 68 e8 e8 e8 e8 e8 68 68 68 hhhhhhhh.....hhh

 00c0 127683 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 00d0 128197 3938 68 68 68 68 68 68 68 e8 e8 e8 e8 e8 28 68 68 68 hhhhhhh.....(hhh

 00e0 128710 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 00f0 129226 4063 68 68 68 68 68 68 e8 e8 e8 e8 68 68 68 68 68 68 hhhhhh....hhhhhh

 0100 129741 4031 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 0110 130257 4162 68 68 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 hh.....hhhhhhhhh

 0120 130771 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 e8 hhhhhhhhhhhhhhh.

 0130 131288 3938 68 e8 e8 e8 e8 e8 e8 68 68 68 68 68 68 68 68 68 h......hhhhhhhhh

 0140 131802 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 68 hhhhhhhhhhhhh..h

 0150 132319 4063 e8 e8 e8 68 e8 68 68 68 68 68 68 68 68 68 68 68 ...h.hhhhhhhhhhh

 0160 132831 4000 68 68 68 68 68 68 68 68 68 68 68 68 e8 e8 e8 e8 hhhhhhhhhhhh....

 0170 133346 3938 e8 e8 e8 68 68 68 68 68 68 68 68 68 68 68 68 68 ...hhhhhhhhhhhhh

 0180 133858 4031 68 68 68 68 68 68 68 68 e8 68 e8 e8 e8 e8 e8 68 hhhhhhhh.h.....h

 0190 134371 4063 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 01a0 134882 4000 68 68 68 68 68 68 e8 68 68 e8 e8 e8 e8 e8 68 68 hhhhhh.hh.....hh

 01b0 135395 4063 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 01c0 135906 4063 68 68 68 68 68 68 68 e8 e8 e8 e8 68 e8 e8 68 68 hhhhhhh....h..hh

 01d0 136418 3968 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 hhhhhhhhhhhhhhhh

 01e0 136931 4000 68 68 68 68 e8 68 e8 e8 e8 e8 68 68 68 68 68 68 hhhh.h....hhhhhh

 01f0 137443 4000 68 68 68 68 68 68 68 68 68 68 68 68 68 68 ac 46 hhhhhhhhhhhhhh.F

 0200 137956 4000 42 3a f8 B:.

http://dmweb.free.fr/?q=node/210
http://dmweb.free.fr/?q=node/210
http://dmweb.free.fr/?q=node/1429
http://dmweb.free.fr/?q=node/1429
http://www.google.com/patents?vid=USPAT4849836

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 60 / 77

Let’s zoom to sector 7:

We can see that the flux reversals spacing follow a strange pattern and includes a lot of
“border bits”.

Here we can see that the beginning of the sector has normal timing. But after the position
122000 we have the bit reversals gradually sliding to the border of the inspection window
(close to 5000 ns). We can see that we have a pattern that looks like a sine wave and this
implies that many bits are at the border of the inspection window.

As explained in the WD1772 DPLL Input Circuitry, having reversals at the border of the
inspection windows will result in random value latched by the DPLL data separator and
therefore these bits can be considered as Fuzzy Bits. Reading this sector several times will
results in different values returned due to the floppy disk rotation speed fluctuations.

5.8 Eco by Ocean
Tracks 77 and 79 have one sector number 2 and the rest is unformatted. The track look like
this

Protection checked using simple read and write calls. Checks that no sector #1 is present on
track and then it tries to write on sector #2. If any of this test fails the program freezes.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 61 / 77

5.9 Golden Axe
On track 01.0 I find the following protections:
 Intra-sector Bit-rate Variation (IBV) – Macrodos/Speedlock
 Sector with Fuzzy Bits (FZD) and Bad Data (CRC)
 Invalid ID Field (IIF) without Data Field (SND) (see Colorado for the Invalid ID field)

Track 02.0 – 56.0
contain Data Tracks.

All these tracks are read
using a read track
command. In this
specific version we have
a sequence of 3 A1 sync
mark followed by the
data track. The escape
character used is 0x0F.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 62 / 77

5.10 Jupiter Masterdrive
The protections are located on track 02.0 – 04.0:
 Hidden data into gap
 Invalid data into gap
 Hard to reproduce flux sequence.
 Track size

The game starts by checking if the length of the track is less than 6300 bytes. This is unusual
as the normal track length is 6240 but you will see bellow that an extra sequence is added at
beginning of the track and this sequence should not add more than 60 bytes. The real hard
to reproduce protection is the following: a read track command is done and the content of the
buffer is analyzed. The program looks for the first apparition of a $F7 byte (invalid character
that can’t be written by the WD1772 write track) that must be followed by a $00 byte. If this
succeed then it checks that the following bytes contains $DEADC0DE (almost dead code!).
Then program checks bytes located before the $F7 for the sequence 921090C20BCDB4F7.
This is done by comparing the two long word
$C2901092 & $F7B4CD0B. So the complete
sequence from the first sync mark is:
…C2001C921090C20BCDB4F700DEADC0DE…

This sequence is always read correctly because it
starts with a $C2 sync mark. What is also interesting
is that the $5224 sync mark ($C2) placed after the
$90 is a followed by a $4489 sync mark delayed by
one bit (see flux seq. below). You can see on the
graph the first $C2 sync mark followed by the $C2+$A1 sync marks part of the protection and
latter the normal sequence of 3 $A1 sync marks part of the first ID field. This is an impossible
to generate sequence of bit on an Atari and therefore it requires a mastering machine

The two sync marks are decoded by the WD1772 as $C2 $0B:

Flux Transition Sequence: 9254 A449 4489 5251
1001001001010100101001000100100101000100100010010101001001010001

C2 0101001000100100

A1 0100010010001001
DSR from C2 to 0B : 11000010, 10000100, 00001000, 00010000, 00100000, 01000001, 10000010, 00000101, 00001011

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 63 / 77

5.11 Kick Off 2 (Anco Software 1990)
Kick Off 2 uses combinations of the following protection tracks 02.0-06.0:
 Nonstandard Sector’s Number: 12 Sectors/Track
 Data Over Index pulse
 Sector Within Sector (and even Sector Within Sector Within Sector)
 Non Standard sector Size (1024)
 No Flux Area
 Fuzzy bytes

Here is the complete content of track 2

Few things to note:
 We clearly see that

we have a No Flux
Area (NFA) around
125ms

 Just before this NFA
we have several
overlapping sectors.

 The last sector
continue past the
index

If we zoom around the
end of track (@ 200ms)
we can see that the last
sector has its ID field
around 191ms and the
Data field starts around
192ms and terminate at
about 9ms in the next
revolution.

Now if we zoom close to the NFA we can
see a first sector (sector 0 with a size of
1024) and inside this sector we have a
second sector (sector 16 with a size of
1024). This is the Sector within Sector
protection (SWS). Both of these sectors
included in their data field the NFA area
(that reads with Fuzzy bits and CRC
error). During mastering the flux transitions
are carefully crafted so that the included
sector 16 is shifted by a half cell (using a
normal $A1 sync mark) from the sector 0.
Therefore the read sector command for
sector 0 reads the “data bits” of the NFA (remember that during read sector the sync mark
detector is disabled). The read sector command for sector 16 reads the “clock bits” of the
NFA because this sector is shifted by a half cell compared to sector 0. This technique allows
to check the presence of an NFA areas (both clock and data bits equal to zero) in spite of the
limitation of the WD1772 that can normally only read the data bits of a sector.

See also Checking NFA with the WD1772

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 64 / 77

5.12 Maupiti Island
Track 00.0 of disk 1 and disk 2 are normal Atari track with 9 sectors. Track 00.0 on disk 1
contains a boot loader used to load the game. Track 00.0 on disk 2 is used to save game
state. All the other tracks on both disk use a non-standard Data track format.

This format contains three standard $4489 sync marks followed by
 $FE
 $07 (escape character),
 track number
 $07,
 checksum high byte
 $07
 checksum low byte
 $07
 5842 data bytes

The code just searches for two $A1 at the beginning of the track, followed by $FE. It also
tests the track number (it has to match the position of the head, bit 7 is set for side 2). The
checksum is an unsigned word, which is calculated by adding all 5842 (unsigned) data bytes
together. The checksum is also tested.

Several things to note:
 Because the data bytes can contain any byte $00-$FF it can't be written with a standard

FDC write track, which can't write bytes $F5-$F7.
 During a read track the sync detector of the FDC is active at all time. It is well known that

specific sequence of bytes can be interpreted by the FDC as $5224 sync mark. This
causes all the following bytes to be read incorrectly. To prevent that happening a very
simple yet efficient method is used: a $07 escape byte is inserted in front any byte that
would lead to a sync mark. Claus Brod wrote a wonderful article about this. This is also
the reason to have these bytes in the track header! (See also Obitus).

5.13 Night Shift (US Gold)
 Track 0-78
 2 Sector 66 Sector with No Data
 Sector 66 Duplicate Sector

At the beginning of the track we can see
that we have a sector 66 not followed by a
data segment. At the end of the track we
have a duplicate sector 66 also without a
data segment. A read sector returns a
RNF status for sector 66.
 Track 79
 Sector 6 Fuzzy bits + CRC error.
 Short Track (about 6000 bytes)

We can see that sector 6
contain an unformatted area.
This result in random byte
read (Fuzzy bytes) and of
course a CRC error.

It seems that there is another
unformatted area at the end
of the track.

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 65 / 77

5.14 Obitus
Very similar to Maupiti Island

Track 00.0 is normal Atari track with 9 sectors. All the other tracks on both disk use a non-
standard Data track format. However the format of the Data Track is different.

I only know that this format contains the three standard $4489 sync marks and that an
escape byte $0F is used to avoid false sync sequence. Apparently most of the track seems
used and therefore should allow about 30% more bytes that on a standard track.

5.15 Operation Neptune
Same as Bob Morane

5.16 Populous (Electronic Arts)
Track 00.0
 Sector 6 has CRC error.
 Sector 6 long Sector 17206µs

which is about 4.2% above a
normal sector of 16502µs.

This is the Rob Northen protection from 1988

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 66 / 77

5.17 Power Drift
This game uses the Fuzzy Track protection (see also Vroom for fuzzy track).

The protection is located at the beginning of track 01.0 on Disk 2/3

The track starts with some MFM data and the
rest seems unformatted. We can see some sync
mark at the beginning of the track. Let’s now
zoom in this area.

The program probably tests the protection by
reading several times the track 01.0.

Here is for example three consecutive reads:

We can see that after the sync marks we have a constant sequence 00 00 F7 F7 F7 F7 00
followed by some fuzzy bytes followed by another sync mark sequence.

Therefore the program probably tests the constant sequence that contains invalid $F7 bytes,
and then must test the presence of fuzzy bytes.

This kind of protection (Fuzzy track) is not supported by Pasti format and therefore it is not
possible to save a working .stx file for this game.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 67 / 77

5.18 Sherman M4
Track 79.0 has 70 sectors. Each sector is declared with a size of 512 bytes and therefore it is
obvious that they all overlap (Sector Within Sector) and have CRC errors. Some of them
even have fuzzy bytes. The track looks like this

 Similar Au Nom de l’Hermine, Fire and Forget …

5.19 Star Glider 2
 Track 00.0 contains just one sector that looks like a boot loader.
 Track 01.0 contains unknown data? (firebird track?)
 Tracks 02.0-78.0
 5 sectors of 1024 bytes + 1

sector 512 bytes
 Sector numbered 245 - 250

($F5 - FA)
 All gap data $4E replaced

by Invalid bytes $F7
 Invalid ID Field

Now let’s detail the first ID field:
 Track num = $F7
 Side num = $F7
 Sector num = 245 ($F5)
 Size = $F7.

You have to play some trick to
bypass the $F7 track number, the
side is not used. For the size if
only the last two bits are kept we
end up with 3 (1024 bytes).

For the last ID of the track the size
= $F6 that result in 2 (512 bytes).

Of course you can see that all the inter/intra gap bytes are $F7

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 68 / 77

5.20 Theme Park Mystery (Image Works)
Theme Park Mystery from Image Works uses the following protection mechanisms:
 Number Of Sectors: 12 sectors per track on all tracks!
 Fuzzy Sectors on all tracks
 Sectors with bad Data Fields on all tracks
 Sector Within Sector on all tracks
 Data Over Index on all tracks
 No Flux reversals area

We are going to describe mainly the Sector within Sector over NFA protection.

Here is a dump of the end of track 1 (sector 11):

Inside the data block of the sector 11 (0x0B) we have a sync sequence of 3 $A1 followed by
an IDAM followed by the ID Field for sector 12. Then we have a GAP3 followed by a sync
sequence followed by a DAM and the Data Field.

Here we clearly see that:
 Sector 10 is normal.
 Sector 11 has a DATA Field wrapping at the beginning of the track (DOI) is read with a

CRC error (CRC) and fuzzy bits, ant it contains sector 12 (SWS).
 Sector 12 has DATA field starting inside sector 11 and wraps at the beginning of the

track it is also read with a CRC error and fuzzy bits.

We have also a no flux reversal area at the end of the track. After zooming at the end of the
track we see the no flux reversal area (NFA):

This NFA is located
inside the two
overlapping sectors 11
and 12 (SWS).

Refer to Kick off 2.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 69 / 77

5.21 Time of lore
Most tracks are shifted tracks. What is interesting is that the shifting of the track is
proportional to the track number. We have the following pattern

Side 1 of the disk contains some strange flux transitions

But probably not used?

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 70 / 77

5.22 Turrican
Turrican contains a lot of interesting protection mechanisms. You should refer to information
provided by Markus Fritze on Turrican protection and the Atari Forum

We are going to look at the following protections:
 Non-standard sector size 1 * 512 + 5 * 1024 (total of 5632 bytes)
 No Flux reversal Area
 Sector within Sector - with cell bit shifting allowing to read clock bits
 Fuzzy sector with CRC error
 Data Over Index

The read track provides the following layout:

**

Track Layout Information: 6290 Bytes - length=199.98 ms

ID Good/Bad=4/1 - Data Good/Bad=1/4 - Sync Good/Bad =10/42

**

GAP1 1 bytes length=63.00 us

-----------+------------------+-----------+---------------------------+------------

GAP2 |ID |GAP3 |DATA |GAP4

Bt Lgt |Sct Pos Lgt CRC|Bt Lgt BS|Bt Lgt CRC TMV BRD Clk |Bt Lgt BS

-----------+------------------+-----------+---------------------------+------------

517 16488 |3 16551 222 OK |38 1177 1|1027 32677 BAD 0 0 3.98|13 415 0

6 172 |6 51217 224 OK |37 1185 0|1027 32703 OK 0 0 3.98|4 127 0

7 223 |0 85682 217 BAD|38 1183 0|1027 32503 BAD 0 1 3.96|8 252 0

863 27242 |2 147081 222 OK |37 1175 0|1027 32835 BAD 0 0 4.00|10 318 0

6 191 |5 181825 223 OK |37 1178 0|525 16753 BAD 0 0 3.99|0 0 0

-----------+------------------+-----------+---------------------------+------------

We can see that the FD uses several 1024 bytes sector and that the last sector is truncated
indicating Data over Index.

The no flux area is located inside the sector 0 but we will see that this sector 0 in fact
contains sector 16 and sector 1.

Here we can see clearly that sector 0 contains sector 16 and sector 1 (Sector within sector)
and that sector 16 fully contains sector 1 of 512 bytes (sector within sector within sector). We
can also see that sector 0 and sector 16 reads with fuzzy bits (orange bar on the plot). The
reason is that sector 0 and sector 16 contains the no flux reversal area.

An interesting mechanism is used: Sector 0 start with the following bytes:

Detail buffer content for sector 0 with 1027 bytes

= DATA ID=0 1027 bytes @87082 us length=32637.85 CRC BAD CLK=3.97 TMV=0 BRD=1 DOI=0

 *** Fuzzy Sector *** starting at byte position 217

 0000 87082 4000 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 7f ff ff ff ff ff ff ff ff ff ff ff ff ff ff .•..............

 0010 87596 3968 00 a1 a1 a1 fe 07 00 10 03 bb 21 4e 4e 4e 4e 4e !NNNNN

 ff 0a 0a 0a 00 f8 7f e7 fc 00 4e 10 90 90 90 90 •...N.....

 0020 88103 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 0030 88614 3968 4e ff ff ff ff ff ff ff ff ff ff ff fe 14 14 14 N...............

 90 00 00 00 00 00 00 00 00 00 00 00 00 a1 a1 a1

 0040 89124 4000 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0050 89629 3968 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00

In green we can see inside data block the presence of 3 sync character followed by the ID
block of sector 16 (sector within sector) however if we look further we do not see directly the
sync mark for the data block. Instead we see the presence of 3 bytes with value $14 followed
by a byte $00. If we turn the “clock” flag of the KFAnalyze program it also print the clock
value of the decoded byte. Here we can see that in fact the $A1 sync bytes are in fact in the
“clock” bytes. The sync mark detector will take care of shifting by a half cell to correctly read
the data of sector 16. This result in reading the “data” bytes for sector 0 and reading the
“clock” bytes for sector 16. This allow to check the presence of the NFA (no clock, no data).

http://www.sarnau.info/atari:protection_turrican
http://www.atari-forum.com/viewtopic.php?f=47&t=19948&start=25#p189968

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 71 / 77

5.23 Vroom
 Track 00.0 + 77.0 + 78.1 + 79.1 seems to be normal tracks.
 Tracks 01.0-76.0 + 00.1-76.1 are Data Tracks. They seems to use the same format as

described in Maupiti Island using a $07 escape character (Lankhor ST format?).
 Track 78.0 is extremely

strange. It contains 9
sectors alternatively
formatted and
unformatted. At the end of
the track we find a data
segment followed by
another data segment. In
other word a data
segment not preceded by
an ID segment. There is
no way to read this kind of
segment with a read
sector command however
it is possible to read it with
a read track command. But here is the interesting protection: This sector
contains the normal $A1 $A1$ A1 $FB header that is used to sync
correctly the WD1772 but after we see some transitions that violates the
normal MFM codding and this results in fuzzy bytes. So if we perform
several consecutive read track commands and look at the beginning of
this segment we have:
rev 1 we have A1 A1 A1 FB 00 4E 80 00 E7 7F FB 7F F7 BF 7F FF FF FF FF…

rev 2 we have A1 A1 A1 FB 00 4E 80 00 E7 7F FB 7F E5 BF 7F FF FF FF FF…

rev 3 we have A1 A1 A1 FB 00 4E 80 00 E7 7F FB FF F5 00 80 00 00 00 00…

Etc.

Therefore this track uses the Fuzzy Track protection. Note that this kind of protection
cannot be imaged with the Past format. See also Power Drift.

 Track 79.0 is also strange it contains 2 $A1 sync mark followed by a constant set of MFM
flux at 4µs decoded as a continuous sequence of $00 bytes.

 Track 77.1 contains 54
overlapping sectors. But with an
extremely strange pattern I have
never seen before. The data
field follow the ID field
immediately with zero gap’s
byte! Normally a read sector
command should not work as no
time is given to the
WD1772 to “react” to
the detection of the
correct ID. Note that
the sort data segment
contains in French the
message: “Hello.
Vroom protection track
77 / 79 Christian and
Costas. Thanks.”

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 72 / 77

5.24 Wizball, Ocean
This is supposed to be old Copylock from 1987?
 Track 79.0
 Data over index sector 246
 Invalid sector number 245,

246,247 ($F5, $F6, $F7)
 Sector 9 inside sector 247 (SWS)
 Invalid character $F7 in GAP
 Hidden data in track

Most of the protections can be seen in
the above section of the read track. We see that inside sector 247 ($F7) we have a short
data field that contains only $F7 bytes. This is followed by sector 9 ID field, followed by $F7
invalid characters in a GAP. Then we have the data segment with F0F1F2…FF484CC200…
and the sector continue filled with $00
bytes. However if we read this sector 9
with a read sector command we find
F0F1F2…FF484C followed by
49434154494F4E (DUPLICATION).

5.25 Z-out
 Track 00.0 is a normal track.
 Tracks 00.1-79.1 use special format:
 6 Sectors by track: 1024, 1024, 1024, 1024, 512, 1024
 Invalid ID Field (IDF)

The normal $FE IDAM is
replaced by $FD. As you
know the WF1772 ignore
the last bit of the AM
therefore $FD=$FC.
Normally $FC is an IAM
(Index address mark) located after a sequence of three $C2 sync mark used in DOS
diskettes but not used in Atari diskettes. So this is quite strange but indeed an
undocumented feature of the WD1772 is to consider the $FD IAM to be equivalent to an $FE
IDAM. To summarize it is possible to read sector with an ID starting with the $FD IAM. The
next strange thing is the length field of the ID field. Normally it should be in the range 0-3 but
here the value is $F3. In fact another not documented feature of the WD1772 is that it only
looks for the last two bits in the length field and ignore the other bits. Therefore $F3 is
interpreted as $03 corresponding to a size of 1024. The sector with a length of 512 bytes is
described with

Here again the length $A2 is interpreted as $02 corresponding to a size of 512 bytes.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 73 / 77

Chapter 6. References

6.1 Documents / Articles
 Article on protection "copy me I want to travel" from Claus Brod the expert who wrote the

book Scheibenkleiste covering all sort of interesting details about floppy disks, hard disks,
RAM disks, CD-ROMs and other mass storage devices for the Atari (Claus web site).

 Probing the FDC: Learn the Secrets of your Floppy - By David Small
 Atari Protected Disk Image Format & Atari Preservation Project
 Floppy disk format How can I copy my copy-protected Atari software
 An interview with Rob Northen
 Dungeon Master Copy Protection
 Disk Backup Programs: Do they really work
 Teac & Citizen Micro Floppy Disk Drive Specification
 Floppy from HP
 How to HD install Pacland (MFM format) using WHDLoad
 Commodore C1581-handler
 S100-Manuals - Disks and Disk Drives
 Wipe Swap File
 SpinRight Technical note
 An interview with Rob Northen

6.2 Forums Threads
 Way how SW testing copy protection
 Analysis of submitted games
 List of difficult to copy disks
 Floppy Disk Copy Protection
 Copy Protection details
 Looking for Rob Northen originals
 Rob Northern Code Found
 Weak Bits, Bit-rate var., data under index: Copy Protection
 Questions Regarding STT Images
 Protected disk images project & CAPS
 Ideas about ST floppy image make program for PC
 PASTI Project
 Copy II ST
 Looking for AntiBitos 1.4 by illegal
 Most memorable Hack/crack
 Protected Disk Image Project Seeking Beta Tester
 Ideas about ST floppy image make program for PC
 Looking for DMA file under interrupt
 Mega STE Specifics
 Copy Protected Disks at AtariAge
 Gcopy DIM file
 ST Protection routines
 Putting a second internal floppy drive in the STF
 RamDisk and ATARI-ST Disk IO
 X-out original protected
 Copy Protected Disk – Turrican NFA Protection (IFW / Mr. Vince)
 List of Difficult to Copy Disks
 WD1772 behavior on too many syncs
 Routine to measure read sector time
 Trouble using FloImg or FdRawCmd
 WD1772 behavior on too many syncs

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://www.clausbrod.de/cgi-bin/view.pl/Atari
http://www.clausbrod.de/cgi-bin/view.pl/Atari/Scheibenkleister
http://www.clausbrod.de/cgi-bin/view.pl/Atari
http://www.atarimagazines.com/startv1n2/ProbingTheFDC.html
http://www.ataripreservation.org/websites/freddy.offenga/atp15.txt
http://www.ataripreservation.org/
http://www.answers.com/topic/floppy-disk-format
http://www.faqs.org/faqs/atari-8-bit/faq/section-73.html
http://members.tripod.com/whdloadrules/rob_northen_interview.html
http://dmweb.free.fr/?q=node/210
http://www.cyberroach.com/analog/an11/backup.htm
http://www.teac.de/dspd/downloads/datasheets/dl_fd05hf8630.pdf
http://www.citizen.co.uk/pdf/x1de00a.pdf
http://docs.hp.com/en/B9106-90013/floppy.7.html
http://zakalwe.fi/~shd/amiga-cracking/mfminstalling.txt
http://www.cs.tut.fi/~albert/Dev/1581/
http://www.s100-manuals.com/Disk-drives.htm
http://cypherpunks.venona.com/date/1996/01/msg01206.html
http://www.grc.com/files/technote.pdf
http://www.codetapper.com/amiga/interviews/rob-northen/
http://www.atari-forum.com/viewtopic.php?f=102&t=25991
http://www.atari-forum.com/viewtopic.php?f=95&t=26161
http://www.atari-forum.com/viewtopic.php?f=102&t=25854
http://www.atari-forum.com/viewtopic.php?f=95&t=21952&p=253989#p195484
http://www.atari-forum.com/viewtopic.php?f=47&t=19948
http://www.atari-forum.com/viewtopic.php?t=6454&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=3023&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=9012
http://www.atari-forum.com/viewtopic.php?t=1241&postdays=0&postorder=asc&highlight=mfm+sync+byte&start=0
http://www.atari-forum.com/viewtopic.php?t=3454
http://www.atari-forum.com/viewtopic.php?t=6571
http://www.atari-forum.com/viewtopic.php?t=5080&highlight=copy+protected+disk
http://www.atari-forum.com/viewtopic.php?t=3583&highlight=copy+disk+protection
http://www.atari-forum.com/viewtopic.php?t=6496&start=0&postdays=0&postorder=asc&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=4113&highlight=protection+routines
http://www.atari-forum.com/viewtopic.php?t=3284&highlight=copy+disk+protection
http://www.atari-forum.com/viewtopic.php?t=6571&highlight=fdc
http://www.atari-forum.com/viewtopic.php?t=5080&highlight=copy+protected+disk
http://www.atari-forum.com/viewtopic.php?t=4409&highlight=lattice
http://www.atariage.com/forums/index.php?showtopic=51523&pid=819085&mode=threaded&show=&st=&
http://www.atari-forum.com/viewtopic.php?t=6090&postdays=0&postorder=asc&start=0&sid=38697120aac930de9f40d00adfb141c8
http://www.atari.st/forum/read.php?f=8&i=2939&t=2921
http://www.atari-forum.com/viewtopic.php?t=7687
http://www.atari-forum.com/viewtopic.php?t=6681&highlight=internal+book
http://www.atari-forum.com/viewtopic.php?t=7657
http://www.atari-forum.com/viewtopic.php?f=47&t=19948&start=25#p189968
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&hilit=list+of+difficult#p242708
http://www.atari-forum.com/viewtopic.php?f=16&t=22202&p=197367&hilit=+index#p197367
http://www.atari-forum.com/viewtopic.php?f=16&t=9128&hilit=index
http://www.atari-forum.com/viewtopic.php?f=8&t=9644&hilit=index
http://www.atari-forum.com/viewtopic.php?f=16&t=22202&p=197367&hilit=+index%20-%20p197367
http://www.atari-forum.com/viewtopic.php?f=16&t=22202&p=197367&hilit=+index%20-%20p197367

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 74 / 77

6.3 Related Patents
You may want to look at the following patents that describe some protection mechanisms:
 Copy Protection for computer Disc 4,849,836
 Computer Program protection method 4,462,078
 Hardware key-on-disc for copy protecting magnetic storage data 4,577,289
 Copy protecting system for software protection 4,584,641
 Techniques for preventing unauthorized copying of information recorded on a recording

medium and a protected recording medium 4,734,796
 Copy protection disc format controller 5,432,647
 Data Input Circuit with Digital Phase Lock Loop

6.4 Web Sites
 Atari ST FD (Hardware view)
 Atari ST FD (Software view)
 Atari FD Protection/Preservation
 Atari ST Copy Protections (Markus Fritze)
 Protections sur Atari ST/Amiga
 PASTI Project
 Software Preservation Society
 KryoFlux Products & Services Limited
 C64 Preservation Project (Commodore)
 Atari Disk Image FAQ
 Tim Mann's TRS-80 Pages
 The .ADF (Amiga Disk File) format FAQ
 Introduction to Magnetic Recording
 Funny presentation about perpendicular magnetic recording !!!
 Individual Computer Support
 The Central Point Option Board
 SpinRite's Defect Detection Magnetodynamics
 The Gentle art of Protection
 The XCOMP/2 home page
 LIBDSK library for accessing discs and disc image files
 WinUAE Amiga Emulator

6.5 FDC & Related Information
 Atari ST – FD/HD Programming – Jean Louis-Guérin
 WD1772 Floppy Disk Formatter/Controller - WD Corporation – JLG edition
 Western Digital Corporation 5.25" WD1770/1772 Floppy Disk Controller/Formatter
 8272 SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLER
 Intel 82077AA FDC Datasheet
 Commodore C1581 - WD1770 FLOPPY DISK CONTROLLER
 PC87310 (SuperI/OTM) Dual UART with Floppy Disk Controller and Parallel Port

 Hard Disk Data Encoding / Decoding.
 Cyclic Redundancy Check, CRC16-CCITT, The Great CRC Mystery Terry Ritter

6.6 Game References
 Arkanoid: ST Protection M.Fritze
 Au nom de l'hermine: List of difficult to copy disks
 Barbarian Pasti/STX File Format Ways how SW testing copy protection ST Protection

M.Fritze
 Colorado: List of difficult to copy disks ST Protection M.Fritze
 Eco: List of difficult to copy disks (more more)
 Falcon: Analysis of submitted games
 Ghost Buster: List of difficult to copy disks

http://www.uspto.gov/patft/index.html
http://www.google.com/patents?vid=USPAT4849836
http://info-coach.fr/atari/hardware/FD-Hard.php
http://info-coach.fr/atari/software/FD-Soft.php
http://info-coach.fr/atari/software/preservation.php
http://www.sarnau.info/#atari_st_copy_protections
http://www.cpc-power.com/aitpast/index.php?page=dossier&id=5
http://pasti.fxatari.com/
http://www.softpres.org/
http://www.kryoflux.com/
http://rittwage.com/c64pp/dp.php?pg=protection
http://www.atarimax.com/ape/docs/DiskImageFAQ/
http://www.tim-mann.org/misosys.html#filfo
http://lclevy.club.fr/adflib/adf_info.html
http://tpub.com/neets/book23/96.htm
http://www.hitachigst.com/hdd/research/recording_head/pr/PerpendicularAnimation.html
http://www.jschoenfeld.com/indexe.htm
http://retro.icequake.net/dob/
http://www.grc.com/srphysics.htm
http://scp.xradiograph.com/archives/2006/01/the-gentle-art-of-protection
http://www.geocities.com/SiliconValley/Pines/7885/Download/DownloadXComp.html
http://www.seasip.demon.co.uk/Unix/LibDsk/
http://www.winuae.net/
http://info-coach.fr/atari/documents/mydoc/FD-HD_Programming.pdf
http://info-coach.fr/atari/documents/mydoc/WD1772-JLG.pdf
http://dev-docs.atariforge.net/files/WD1772.pdf
http://andercheran.aiind.upv.es/~amstrad/docs/i8272/8272sp.htm
http://www.osdever.net/documents/82077AA_FloppyControllerDatasheet.pdf?the_id=41
http://www.devili.iki.fi/Computers/Commodore/C1581/Service_Manual/Page_09.html
http://eshop.engineering.uiowa.edu/NI/pdfs/01/05/DS010591.pdf
http://www.pcguide.com/ref/hdd/geom/data.htm
http://www.erg.abdn.ac.uk/users/gorry/course/dl-pages/crc.html
http://www.joegeluso.com/software/articles/ccitt.htm
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=102&t=25854#p243018
http://www.atari-forum.com/viewtopic.php?f=47&t=19904&p=248159&hilit=barbarian#p248159
http://www.atari-forum.com/viewtopic.php?f=102&t=25991&hilit=barbarian#p247731
http://www.sarnau.info/start#papers
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=200#p247350
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=75#p244474
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=75#p244877
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=150#p247164
http://www.atari-forum.com/viewtopic.php?f=95&t=26161&p=247974#p247979
http://www.atari-forum.com/viewtopic.php?f=102&t=25854#p242904

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 75 / 77

 Golden Axe: List of difficult to copy disks
 Indiana jones and the last crusade: ST Protection M.Fritze
 Jupiter Masterdrive: List of difficult to copy disks (more)
 Maupiti Island: List of difficult to copy disks ST Protection M.Fritze
 Midi Maze: ST Protection M.Fritze
 Power Drift: List of difficult to copy disks Power Drift and Pasti & patch (more) Way how

SW testing copy protection
 Spy Vs Spy: ST Protection M.Fritze
 Start Glider 2: List of difficult to copy disks
 Time of lore: SCP Disk images Way how SW testing copy protection
 Turrican: ST Protection M.Fritze
 Vroom: Pasti images that should but don’t work
 Wizball: List of difficult to copy disks
 Z-out: List of difficult to copy disks (more)

http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=200#p247345
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=250#p248282
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=275#p248377
http://www.atari-forum.com/viewtopic.php?f=102&t=25854#p242886
http://www.sarnau.info/start#papers
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=175#p247307
http://www.atari-forum.com/viewtopic.php?f=47&t=25997&hilit=Power+Drift#p245186
http://www.atari-forum.com/viewtopic.php?f=47&t=25997&hilit=power+drift#p245186
http://www.atari-forum.com/viewtopic.php?f=102&t=25991&p=245187&hilit=power+drift#p245187
http://www.atari-forum.com/viewtopic.php?f=102&t=25991&p=245187&hilit=power+drift#p245187
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&hilit=list+of+difficult&start=350#p248531
http://www.atari-forum.com/viewtopic.php?f=102&t=26976&start=50#p259873
http://www.atari-forum.com/viewtopic.php?f=102&t=25991&p=261590&hilit=time+of+lore#p261532
http://www.sarnau.info/start#papers
http://www.atari-forum.com/viewtopic.php?f=47&t=8219
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=100#p246734
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&start=400#p249924
http://www.atari-forum.com/viewtopic.php?f=102&t=25854&hilit=list+of+difficult&start=400#p249979

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 76 / 77

Chapter 7. Document history
 V1.4 June 24, 2015

Beyond many small fixes in text the following sections have been added: Sector with No
Data (SND) protection, WD1772 MFM track language, WD1772 Synchronization (sync
marks detection), False sync mark detection, WD1772 Bug in Read/Write Track
commands, WD1772 CRC Information, Special case of No Flux Area over index, Hidden
data. The Sync Mark in Data (SMD) protection has been removed. Analysis of Dragon
flight game has been added.

 V1.3a – November 14, 2014
Fixed hyperlink not working

 V1.3 - November 12, 2014.
The categories of protection is now reduced to two (removed fuzzy and physical – not
used – categories). The fuzzy bit detailed description is now moved as a section of the
Useful information chapter and fuzzy sector/track added to data category. NFA moved to
timing category. Names for protections changed to more intuitive names. Added section
of write splices and sync marks. Added Game reference section. Added many new
games analysis. Added Chapter on preserving floppy disks.

 V1.2 June 2014 –
Lots of information added, regrouping of related protections, new examples, etc. Most
significant is Unformatted Tracks, No Sector Data Track, Partially unformatted track,
Fuzzy Data Track, No Flux Area on Disk, Unformatted Diskette / Track / Sector …

 V1.0 - November 2011.
Added information on low level format, particularly about the write splice. Added
description about KFPanzer and KFAnalyze. Now the analysis of games uses the output
from KFAnalyze and especially the nice plots. Added the Short/Long Track and No Flux
reversal Area protections. Remove documentation of Analyze program. Added more
analysis of games (Turrican and others). New information about games protection based
on new KFPanzer capabilities. Added more links to new sites. Added reference to the
new KryoFlux board and related - After 5 years of development I consider the document
mature enough to go to version 1.0

 V0.9 – September 2010.
Clean-up text based on feedback. Modified documentation to reflect the usage of the new
Panzer (Protection ANalyZER) program. Added ID Fuzzy Bits, Invalid Data in Gap, and
Non Standard DAM Protection. Added a section on Preservation for each of the
protections. Added description for Barbarian, Operation Neptune Game. Work with
Gothmog (Christophe Fontanel) on getting more accurate information on Dungeon
Master fuzzy bits protection

 V0.8 – October 2007.
Added taxonomy for the different protection categories. Rewrote of large portion of the
explanations about fuzzy bits. Added 5 new protections: Invalid ID Field, Non Standard
IDAM, Sector over Index pulse, Missing Track and Sector within Sector. Added
description for several games (Theme Park Mystery, Computer Hits Volume 2, Kick Off 2,
Colorado). Better documented Intra-sector Bit Variation with reference to Colorado. For
the first time lots of diskettes (over 50) have been tested and references for them have
been entered in the document. And again lots of clean-up

 V0.7 – January 2007.
Several modifications based on feedback from Ijor and Obo. Added a new section on
weak bits based on US patent and a section on Invalid character during format. Plus lots
of miscellaneous cleanup.

 V0.6 – December 2006. Modifications based on feedback from Ijor, I have added one
section about Double Density diskette format, the Invalid sector number protection, and
the intra-sector variable bit rate protection – December 2006

 V0.5 – December 2006.
Incorporated feedback from Gothmog about the DM protection patent, added a section

http://www.atari-forum.com/profile.php?mode=viewprofile&u=517
http://www.atari-forum.com/profile.php?mode=viewprofile&u=976
http://www.atari-forum.com/profile.php?mode=viewprofile&u=830

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) – Rev 1.4 - June 24, 2015 Page 77 / 77

with several US patent about protection, modified the section on fuzzy bits, modified the
fuzzy bit detection in WD1772 DPLL

 V0.4 - November 2006.
Complete documentation cleanup and links verification.

 V0.3 - October 2006.
Major Revision: Merged several related sector protections, modified extensively the
description of several protections, added section on example of protections, added
analyze program short presentation, added DPLL presentation, and added new
protections: PAT and NAT.

 V0.2 - June 2006.
Minor correction based on feedback.

 V0.1 - May 2006.
Initial writing.

